MATH 8000 HOMEWORK 1

Due on Thursday, August 24

- (1) Show that any finite group of even order contains an element of order two.
- (2) Explicitly compute the centralizer of (12) in S_3 .
- (3) Show that if σ is any permutation of *n* elements, and $(i_1 i_2 \cdots i_r)$ is a cycle, then $\sigma(i_1 i_2 \cdots i_r) \sigma^{-1} = (\sigma(i_1) \sigma(i_2) \cdots \sigma(i_r)).$

Use this result to describe the centralizer of (12) in S_n for any n.

(4) Describe the centralizer of the element

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

in $GL_2(\mathbb{R})$.

(5) Let $G = \{(a, b) \in \mathbb{R}^2 \mid a \neq 0\}$. Define a binary operation on *G* as follows:

$$(a,b)\cdot(c,d) = (ac,ad+b).$$

- (a) Show that *G* is a group under this operation.
- (b) Exhibit an injective homomorphism from *G* to $GL_2(\mathbb{R})$.
- (c) Check that $H = \{(1, b) \mid b \in \mathbb{R}\}$ is a normal subgroup of *G* (that is, show that $ghg^{-1} \in H$ for any $h \in H$ and $g \in G$).
- (d) Under your homomorphism from part (b), is the image of *H* a normal subgroup of $GL_2(\mathbb{R})$?
- (6) Show that for any $n \ge 3$, the group A_n is generated by the 3-cycles in S_n . In other words, show that any even permutation is a product of 3-cycles.
- (7) Consider the multiplicative group $(\mathbb{Z}/n)^{\times}$, consisting of all integers modulo *n* that have a multiplicative inverse modulo *n*.
 - (a) Check that $(\mathbb{Z}/7)^{\times}$ is cyclic.
 - (b) Give an example to show that this group is not cyclic in general.
- (8) A group *G* is called *finitely generated* if there is a finite subset $A \subset G$ such that *G* is generated by *A*, that is, $\langle A \rangle = G$.
 - (a) Show that $(\mathbb{Z}^i, +, 0)$ is finitely generated.
 - (b) Show that $(\mathbb{Q}, +, 0)$ is not finitely generated.