MATH 8000 HOMEWORK 6

Due on Thursday, October 5

- (1) Let *F* be a field and let *R* be any non-zero ring. Show that any homomorphism $\varphi: F \to R$ is injective.
- (2) Show that if a and b are two elements of a ring R, then 1-ab is invertible if and only if 1-ba is invertible. (Warning: a and b need not be invertible!)
- (3) Classify all ideals in $M_n(\mathbb{C})$.
- (4) Let I be an ideal in a commutative ring R.
 - (a) Show that $M_n(I)$ is an ideal of $M_n(R)$.
 - (b) Prove that

$$M_n(R)/M_n(I) \cong M_n(R/I).$$

(5) (Chinese remainder theorem for rings). We say that $a \equiv b \mod a$ ideal I if a + I = b + I, or equivalently, $a - b \in I$.

Let I and J be ideals of R that are relatively prime (that is, I + J = R).

- (a) Show that if $a, b \in R$, then there is some $r \in R$ such that $r \equiv a \mod I$ and $r \equiv b \mod J$.
- (b) Show that $R/(I \cap J) \cong R/I \times R/J$.
- (6) Let R be the set of real-valued continuous functions on the interval [0,1]. Given $f,g \in R$, we define (f+g)(x)=f(x)+g(x) and (fg)(x)=f(x)g(x) as usual. Then R is a ring under these operations. For the following problem, you may freely use results about the topology of \mathbb{R} .
 - (a) Let $I \subset R$ be an ideal. Define $V(I) = \{ p \in [0,1] \mid f(p) = 0 \text{ for every } f \in I \}$. Show that I is not the unit ideal if and only if $V(I) \neq \emptyset$.
 - (b) A proper ideal of a ring is called *maximal* if there is no larger proper ideal containing it. Classify the maximal ideals of *R*.
 - (c) Show that V(I) is a closed subset of [0, 1].
 - (d) For any closed subset $A \subset [0, 1]$, define I(A) as follows:

$$I(A) = \{ f \in R \mid f(a) = 0 \text{ for every } a \in A \}.$$

Show that *I* is an ideal.

- (e) Show that V(I(A)) = A for any closed subset $A \subset [0, 1]$.
- (f) Give a counterexample to show that $I(V(I)) \neq I$.
- (g) (Not to be turned in.) Show that $f \in R$ is a zerodivisor if and only if $V(f) = \{p \in [0,1] \mid f(p) = 0\}$ contains an open interval.