MATH 8000 HOMEWORK 9

Due on Thursday, November 2

- (1) Let *F* be a field of characteristic not equal to 2.
 - (a) Let *E* be a quadratic extension of *F*, meaning that [E : F] = 2. Show that

 $S(E) = \{a \in F^{\times} \mid a \text{ is a square in } E\}$

is a subgroup of F^{\times} containing $(F^{\times})^2 = \{a^2 \mid a \in F^{\times}\}.$

- (b) Let *E* and *E'* be quadratic extensions of *F*. Show that there is an isomorphism $\varphi: E \to E'$ fixing *F* pointwise if and only if S(E) = S(E').
- (c) Show that there is an infinite sequence of fields $E_1, E_2, ...$ with E_i a quadratic extension of \mathbb{Q} such that E_i is not isomorphic to E_i for $i \neq j$.
- (d) Let *p* be an odd prime. Show that up to isomorphism, there is exactly one extension of \mathbb{F}_p that has p^2 elements.
- (2) Find a splitting field of $X^{p^m} 1$ over \mathbb{F}_p for every $m \in \mathbb{N}$. What is its degree over \mathbb{F}_p ?
- (3) Let *R* be a commutative UFD. Prove *Eisenstein's irreducibility criterion*, stated as follows. Let

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

be a polynomial in R[x], and let $p \in R$ be a prime such that $p \mid a_i$ for each *i* but $p^2 \nmid a_0$. Then f(x) is irreducible in R[x]. (Gauss' lemma implies that f(x) is also irreducible over the fraction field of *R*.)

- (4) Is the polynomial x³ + 4 reducible or irreducible over Q[x]? What about the polynomial x⁴ + 4? Find the splitting fields of these polynomials over Q, as subfields of C.
- (5) Prove that over any field, a polynomial f(x) has multiple roots if and only gcd(f, f') is a non-constant polynomial. You may use the product rule for formal derivatives without proof.
- (6) Let $f \in F[x]$, where *F* is a field of characteristic 0. Let d(x) = gcd(f, f'). Show that $g(x) = f(x)d(x)^{-1}$ has the same roots as f(x), and that these are all simple (multiplicity one) roots of g(x).