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Abstract. We continue the study of the lower central series of a free asso-

ciative algebra, initiated by B. Feigin and B. Shoikhet [FS]. We generalize via
Schur functors the constructions of the lower central series to any symmetric

tensor category; specifically we compute the modified first quotient B1, and

second and third quotients B2, and B3 of the series for a free algebra T (V )
in any symmetric tensor category, generalizing the main results of [FS] and

[AJ]. In the case Am|n := T (Cm|n), we use these results to compute the ex-

plicit Hilbert series. Finally, we prove a result relating the lower central series
to the corresponding filtration by two-sided associative ideals, confirming a

conjecture from [EKM], and another one from [AJ], as corollaries.

1. Introduction

The lower central series of an associative algebra A is the descending filtration by
Lie ideals A = L1(A) ⊃ L2(A) ⊃ · · · defined inductively by Lk+1 := [A,Lk] for k ≥
2. The corresponding associated graded Lie algebra is denoted by B(A) =

⊕∞
i=0Bk,

where Bk := Lk/Lk+1. We let Mk := ALk denote the two-sided associative ideal
generated by Lk, and let Nk := Mk/Mk+1. We let Z denote the image of M3 in
B1, and B1 := B1/Z.

The notions of associative algebras and Lie algebras make sense in any symmetric
tensor category C, as does the lower central series filtration. These constructions
are given in Section 3; in particular, we consider the lower central series of the
tensor algebra T (V ) of any object V ∈ C. In this generality, the lower central
series quotients Bk are functorial in V , and may be expressed in the basis of Schur
functors Sλ, as is explained in Section 4.

It follows that there exists a universal decomposition of the functor V 7→ Bk(T (V ))
into a sum of Schur functors Sλ, which holds in any symmetric tensor category.
Moreover, to compute this decomposition it suffices to consider only the cases
C = Vect, V = Cn, as n→∞. As an application, we have:

Theorem 1.1. For any symmetric tensor category C, and any V ∈ C, the maps φ
from Theorem 2.4, and f3 from Theorem 2.6, induce natural isomorphisms:

B1(T (V )) ∼= Ωev(V )/Ωevex(V ),

B2(T (V )) ∼= Ωevex(V ),

B3(T (V )) ∼= S(V )⊗ (⊕∞k=0S(2,12k+1)(V )).

In Section 5, we consider the free algebra A = Am|n = T (Cm|n) on even genera-
tors x1, . . . xm and odd generators y1, . . . yn; we study the lower central series with
respect to the usual super commutator [a, b] := ab − (−1)|a||b|ba. The algebra A
and thus each of the Bk are graded by the degree in the generators. Let us write
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hBk(u,v) for the multi-graded Hilbert series of the Bk, where u = (u1, . . . , um),v =
(v1, . . . , vn) record the degree in the even and odd variables, respectively. Our first
main result is a computation of the Hilbert series for B1, B2 and B3, based on the
above decomposition:

Theorem 1.2. We have the following Hilbert series:

hB1
(u,v) =

1

4
(Pm|n +

m∑
i=1

ui
2(1− ui)

+

n∑
j=1

vj
2(1 + vj)

+ 3),

hB2
(u,v) =

1

4
(Pm|n −

m∑
i=1

ui
2(1− ui)

−
n∑
j=1

vj
2(1 + vj)

− 1),

hB3
(u,v) =

1

2
((
∑
i

ui +
∑
j

vj)(Pm|n + 1)− (Pm|n − 1)),

where Pm|n :=
∏m
i=1

(1+ui)
(1−ui) ·

∏n
j=1

(1+vj)
(1−vj) ,

Our second main result, presented in Section 6, relates the Lie ideals Lk for any
algebra A to the two-sided associative ideals Mk := ALk. More precisely, we prove
the following theorem (for any algebra in any symmetric tensor category C):

Theorem 1.3. [Mj , Lk] ⊂ Lk+j, whenever j is odd.

In the case A = An, this may be seen as a strengthening of a special case of
“Key-Lemma” of [FS], which asserts that [M3, L1] ⊂ L3. While the proof of this
theorem is largely by direct computation, there are many implications. Firstly, we
prove the “if” direction of [EKM], Conjecture 3.6 as a corollary:

Corollary 1.4. We have MjMk ⊂Mj+k−1, whenever j or k is odd.

As another application of Theorem 1.3, we have:

Corollary 1.5. Bk = [A≤2, Bk−1], for all k.

A central observation of [FS] was that the lower central series quotients Bk, k ≥
2 each carry an action of the Lie algebra Wn of vector fields on Cn and that
they are iterated extensions of so-called “tensor field modules” Fλ associated to a
Young diagram λ. Theorem 1.5 was conjectured in [AJ], Remark 1.4, where it was
explained (see also the proof of Lemma 5.4, loc. cit.) how to derive the following:

Corollary 1.6. Let k ≥ 3. For Fλ in the Jordan-Hölder series of Bk(An), we
have:

|λ| ≤ 2k − 3 + 2

⌊
n− 2

2

⌋
.

Let λ denote the Young diagram obtained by deleting the first column of λ.

Corollary 1.7. Let k ≥ 3. For Fλ in the Jordan-Hölder series of Bk(An), we
have:

|λ| ≤ 2k − 5.

Let Gλ(V ) := Sλ(V )⊗ Ωev(V ). For example, A/M3
∼= G(0), and B3

∼= G(2,1), by
Theorem 1.1. As another consequence of Theorem 1.5, we have:
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Proposition 1.8. Let C be a symmetric tensor category, let V ∈ C, and let A =
T (V ). There exists a finite collection Λk of Young diagrams λ, and a surjection
⊕λ∈ΛkGλ → Bk.

For a graded vector space M , let M [d] denote the dth graded component. We
have:

Corollary 1.9. Let k ≥ 3, and let A := Am|n. There exists Ck(m,n) such that

dimBk(Am|n)[d] ≤ Ck(m,n)dm+n−1.

In Section 8, we state some open questions and conjectures, and suggest possible
approaches to their solution.

Acknowledgments. We are deeply grateful to P. Etingof for his guidance and
advice. The work of the first author was supported by MIT’s SPUR and UROP
programs for undergraduate research. The work of the second author was supported
by NSF grant DMS-0504847.

2. Preliminaries

In this section, we recall definitions for the lower central series of an associative
algebra A, its associated graded Lie algebra B(A), the Lie algebras Wn, and the
tensor field modules Fλ.

Definition 2.1. Let Wn := Der(C[x1, . . . , xn]) denote the Lie algebra of polyno-
mial vector fields on Cn. Then Wn

∼=
⊕

iC[x1, . . . , xn]∂i, with bracket

[p∂i, q∂j ] = p
∂q

∂xi
∂j − q

∂p

∂xj
∂i.

Let W 0
n denote the Lie subalgebra of vector fields vanishing at the origin, and

let W 00
n ⊂ W 0

n denote its Lie ideal of vector fields vanishing at the origin to at
least second order. Then W 0

n/W
00
n is isomorphic to gln, via the map xi∂j 7→ Eij .

Let λ = (λ1 ≥ · · · ≥ λn) be a Young diagram, and let Vλ be the corresponding
irreducible gln-module. Then Vλ is also a representation of W 0

n via the projection
W 0
n →W 0

n/W
00
n
∼= gln.

Let F̃λ = Homfin.
U(W 0

n)(U(Wn), Vλ), denote the finite part of the coinduced module

HomU(W 0
n)(U(Wn), Vλ), spanned by homogeneous vectors. As a vector space, F̃λ is

isomorphic to C[x1, . . . , xn]⊗ Vλ.

Theorem 2.2 ([R]). If λ1 ≥ 2 or if λ = (1n), then F̃λ is an irreducible Wn-module.

Otherwise, λ = (1k, 0n−k), and F̃λ is Ωk(Cn), the space of polynomial differential

k-forms on Cn. In this case F̃λ contains a unique irreducible submodule consisting
of the closed k-forms.

Let Fλ denote the unique irreducible submodule of F̃λ, which is equal to F̃λ if
λ1 ≥ 2 or λ = (1n).

Theorem 2.3 ([R]). Any Wn-module on which the operators xi∂i, for i = 1, . . . , n,
act semisimply with nonnegative integer eigenvalues and finite dimensional common
eigenspaces has a Jordan-Hölder series whose composition factors are Fλ, each
occurring with finite multiplicity.
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In [FS], it was realized that for A = An, each Bk, k ≥ 2 carries a Wn-action,
arising from an identification of A/M3 with the algebra Ωev of even degree differ-
ential forms on Cn. Let Ωevex denote the subspace of even degree exact forms. Let
us denote by “∧” the wedge product of differential forms. We let “∗” denote the
Fedosov product,

a ∗ b := a ∧ b+ (−1)deg ada ∧ db,
which defines an associative multiplication on Ω, preserving Ωev. The space Ω (resp.
Ωev) equipped with the Fedosov product is denoted by Ω∗ (resp. Ωev∗ ). We have:

Theorem 2.4 ([FS]). The map φ : xi 7→ xi extends to an isomorphism of algebras
Ωev∗
∼= A/M3(A), restricts to an isomorphism Ωevex

∼= B2(A), and descends to an
isomorphism of Ωev/Ωevex

∼= B1(A).

Theorem 2.5 ([FS]). The action of Wn on B1
∼= Ωev/Ωevex by Lie derivatives

extends uniquely to an action of Wn on Bk, for k ≥ 2.

This action of Wn clearly satisfies the conditions of Theorem 2.3. It follows that
B1 and each Bk, k ≥ 2 have a Jordan-Hölder series with respect to this action,
such that each composition factor is isomorphic to Fλ for some Young diagram λ.
By [DE], Corollary 3, the Jordan-Hölder series is of finite length. In [AJ], similar
techniques were used to give a description of B3(An). We have:

Theorem 2.6. The map f3 : B1⊗B2 → B3, a⊗ b 7→ [a, b] restricts to a surjection
(Ω0/C)⊗B2 → B3, and induces an isomorphism

B3
∼= ⊕∞k=0F(2,12k+1).

3. Lower series filtrations in symmetric tensor categories

Let (C, σ) be a symmetric tensor category. For the sake of clarity, we suppress
explicit mention of associators in all formulas and commutative diagrams in this
section.

Definition 3.1. A (unital) associative algebra (A,m, η) in C is an object A ∈ C,
together with morphisms η : 1 → A and m : A⊗ A → A such that m ◦ (η ⊗ id) =
m ◦ (id⊗η) = id and m ◦ (m⊗ id) = m ◦ (id⊗m). Algebra morphisms are defined
in the usual way, yielding the category C-Alg. We will say that A ∈ C-Alg is
commutative if m ◦ (idA⊗A−σA,A) = 0.

Definition 3.2. A Lie algebra (A, µ) in C is an object A and a morphism µ :
A⊗A→ A satisfying:

(1) Skew symmetry: µ ◦ (idA⊗A +σA,A) = 0.
(2) Jacobi identity: µ ◦ (idA⊗µ) ◦ (id +(123) + (132)) = 0.

Lie algebra morphisms are defined in the usual way, yielding the category C-Lie.

As with the example C = Vect, we have the functor,

Lie : C-Alg→ C-Lie

(A,m, η) 7→ (A,m ◦ (id−σA,A)).

Definition 3.3. The commutator morphisms lk : A⊗k → A are defined inductively
as follows: l1 := idA, l2 := µ, lm := lk−1 ◦ (idk−2⊗l2). The lower central series
filtration is the collection of Lk(A) := Im(lk) ⊂ A. For each k ∈ N, we have
injections ik : Lk+1 → Lk induced by the natural injections i1 : L2 → A. We let
Bk := coker ik denote the associated graded components.
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The following is a straightforward generalization of the corresponding statement
for C = Vect, which is proved by repeated use of Jacobi identity:

Proposition 3.4. Let f : A⊗k → A be any morphism obtained by iterating µ.
Then Im(f) ⊂ Lk.

Example 3.5. We will consider the following examples of algebras and their asso-
ciated Lie algebras. Let V ∈ C.

(1) The tensor algebra T (V ) := ⊕iV ⊗i with the usual product.
(2) The symmetric algebra S(V ) := T (V )/〈Im(σV,V − idV⊗V )〉.
(3) The exterior algebra Λ(V ) := T (V )/〈Im(σV,V + idV⊗V )〉.
(4) The algebra of differential forms Ω(V ) := S(V )⊗Λ(V ), and its commutative

subalgebra of even forms (relative to grading on Λ(V )).

Recall that we have canonical isomorphisms s : V → S1(V ) and λ : V →
Λ1(V ). The algebra Ω(V ) has a unique derivation d : Ω∗(V ) → Ω∗+1(V ), such
that d|S1(V ) = λ ◦ s−1, and d|Λ1(V ) = 0. As with ordinary differential forms, d

defines a differential: d2 = 0. We let Ω(V )ex = Im(d) denote the exact forms, and
Ω(V )cl = ker(d) the closed forms. By the Poincaré lemma, we have an isomorphism
Ω(V )cl ∼= 1⊕ Ω(V )ex.

4. From Vect to any symmetric tensor category

All definitions in this section are over a field k of characteristic zero. For back-
ground on symmetric tensor categories and Schur functors, see [D] and [EH].

Definition 4.1. The abelian category of abstract Schur functors is Sch := ⊕j≥0Rep(Sj).
The tensor product of V ∈ Rep(Sj) and W ∈ Rep(Sk) is:

V ⊗W := Ind
Sj+k
Sj×SkV �W,

which defines the structure of a tensor category on Sch. The isomorphisms Sj ×
Sk ∼= Sk × Sj induced by (1, . . . , j, j + 1, . . . j + k) 7→ (j + 1, . . . j + k, 1, . . . j) make
Sch a symmetric tensor category.

As an abelian category, Sch is filtered by its full subcategories SchN := ⊕j≤NRep(Sj),
and is semi-simple, with simple objects Wλ, where Wλ ∈ Irrep(Sk) is the irreducible
indexed by the Young diagram of size k = |λ|, and k ranges over Z≥0.

Let C be a symmetric tensor category. We have a bi-functor F : Sch × C → C,
sending (W ∈ Rep(Sk), V ∈ C) to FV (W ) := (W ⊗ V ⊗k)Sk ∈ C. More precisely,
FV (W ) is the image of ek = 1

k!

∑
σ∈Sk σ ⊗ σ ∈ EndC(W ⊗ V ⊗k). For a Young

diagram λ of size k, we let Sλ := V 7→ FV (Wλ), called the irreducible Schur functor
in C of type λ. Then FV : Sch→ C is a symmetric tensor functor.

For the symmetric tensor category Rep(GLn) of locally finite GLn-modules, we
consider the functors Fn := FCn : Sch→ Rep(GLn).

Claim 4.2. The family of functors Fn is asymptotically fully faithful. More pre-
cisely, Fn|SchN is fully faithful for n ≥ N .

Proof. Let V = Cn. On simples Wλ ∈ Rep(SN ), Fn(Wλ) is simply the Wλ-isotypic
component of the SN module V ⊗N . By Schur-Weyl duality, this is an irreducible
GLn-module Vλ for n ≥ N (while for N > n, it may be zero). We have

HomGLn(Vλ, Vµ) ∼= Cδλ,µ ∼= HomSN (Wλ,Wµ).

�
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We will apply this claim in the form of the following:

Proposition 4.3. (1) Suppose we have an identity of Schur functors (up to an
isomorphism) that holds in Rep(GLn), for all n. Then it holds for abstract
Schur functors, and hence in any symmetric tensor category.

(2) Any morphism of abstract Schur functors which yields an isomorphism (epi,
mono, or zero morphism, resp.) in Rep(GLn) for all n is itself an iso-
morphism (epi, mono, or zero morphism, resp.), and hence yields an iso-
morphism (epi, mono, or zero morphism, resp.) in any symmetric tensor
category.

A simple, yet important, observation is that the members Lk := Lk(T (V )) of
the lower central series, and the quotients Bk, as well as all the algebras and Lie
algebras constructed in the previous sections, are defined purely in terms of the
symmetric group action on various tensor products of an object V . Thus each of
these constructions is in fact functorial in V , and moreover can be expressed in the
basis of Schur functors Sλ.

An immediate consequence is that if we can provide a consistent decomposition of
Li(T (Cn)) into a sum of Sλ(Cn), for all n, then that formula holds in any symmetric
tensor category. As an application, we have:

Proof of Theorem 1.1. Both sides of each asserted isomorphism are expressed in
terms of the Schur functors Sλ(V ). It is easily checked that the morphisms from
[FS] and [AJ] are natural in V , and defined in any symmetric tensor category; thus
they define a natural transformation of the corresponding functors. Moreover it is
shown that they are natural isomorphisms in the case C = Rep(GLn), for all n, and
therefore, by Proposition 4.3, in any tensor category. �

5. Super vector spaces and Am|n

Now we apply the definitions and propositions of the previous section to the
setting of super vector spaces. Let C := SuperVect, and let Cm|n ∈ C denote the
super vector space on even basis {x1, . . . , xm} and odd basis {y1, . . . , yn}. Let
A := Am|n denote the tensor algebra T (Cm|n), and consider the lower central series
Lk(A), and the associated graded quotients Bk(A).

Proof of Theorem 1.2. We compute hB2 first. By Theorem 1.1, we have that B2 is
the subspace Ωevex of exact super differential forms of even degree:

hB2
= hΩevex

=

∞∑
i=0

hΩ2i
ex
.

The map d : Ω(Cm|n)→ Ω(Cm|n) gives rise to the following complex:

· · · d−→ Ωi−1 d−→ Ωi
d−→ Ωi+1 d−→ · · · .

This sequence is exact except for a copy of C at i = 0. Therefore we obtain the
recursion relation:

hΩiex
= hΩi−1 − hΩi−1

ex
, (i ≥ 2)(1)

hΩ1
ex

= hΩ0 − 1,
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which has solution:

(2) hΩiex
=

i−1∑
j=0

(−1)i−j+1hΩj + (−1)i+1.

By the tensor decomposition, Ω(Cm|n) = S(Cm|n)⊗ Λ(Cm|n), we may write:

hΩ(u,v, t) =

∏n
j=1(1 + vj)∏m
i=1(1− ui)

·
∏m
i=1(1 + tui)∏n
j=1(1− tvj)

,

where the variable t is a counter for the degree of the form. Thus h(Ωi) is the
coefficient of ti in h(Ω). From equations (1) and (2), we have:

hΩ2k
ex

=

2k−1∑
i=0

(−1)i+1Coeffti(hΩ) + 1,

= Rest=0

(
hΩ ·

1

t
· t
−2k − 1

1 + t−1

)
+ 1.

As the term (t−2k − 1)/(1 + t−1) has a convergent power series for |t| > 1, we can
compute this residue by taking a contour integral around a circle γ with centre at
the origin and radius greater than 1:

hΩ2k
ex

=
1

2πi

∫
γ

(
hΩ ·

−1

1 + t

)
+

1

2πi

∫
γ

(
hΩ ·

t−2k

1 + t

)
+ 1.

An elementary computation shows that

1

2πi

∫
γ

(
hΩ ·

−1

1 + t

)
= −1,

so we find

hΩ2k
ex

=
1

2πi

∫
γ

(
hΩ ·

t−2k

1 + t

)
,

and thus:

hΩevex
=
∑
k≥1

hΩ2k
ex

=
1

2πi

∫
γ

(
hΩ ·

1

(1 + t)(1− t−2)

)
− 1.

The integrand has a simple pole at t = 1 and a double pole at t = −1. Calculating
the integral by the method of residues yields us the formula asserted for hB2 .

We can compute the Hilbert series of Ωev directly:

hΩev =
1

2
(hΩ(u,v, 1) + hΩ(u,v,−1))

=
1

2
·
∏n
j=1(1 + vj)∏m
i=1(1− ui)

· (
∏m
i=1(1 + ui)∏n
j=1(1− vj)

+

∏m
i=1(1− ui)∏n
j=1(1 + vj)

)

=
1

2
· (Pm|n + 1).

Thus, we compute:

hB1
= hΩev − hB2

=
1

4
(Pm|n +

m∑
i=1

ui
2(1− ui)

+

n∑
j=1

vj
2(1 + vj)

+ 3),

as asserted.
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Finally, we can compute the Hilbert series of B3 from its tensor decomposition
in Theorem 1.1. We have:

hS
(2,1k)

(V ) = hV · hS
(1k+1)

(V ) − hS
(1k+2)

(V ),

from which we compute:

hB3 = hS(V )

(
hV

∞∑
k=1

hS
(12k)
−
∞∑
k=1

hS
(12k+1)

)
= hV (hΩev − 1)− (hΩodd − hV )

=
1

2
((
∑
i

ui +
∑
j

vj)(Pm|n + 1)− (Pm|n − 1)).

�

6. Relations between Mj and Lk

All statements in this section, as well as Lemma 7.1 and Theorem 1.5 apply to
any symmetric tensor category, while proofs are carried out only in the category of
vector spaces. The proofs in general follow by application of Proposition 4.3.

Notational conventions. We have to write many expressions involving iterated
commutators: when it is clearer, we omit brackets and adopt the convention of
right-iterated bracketing:

[x1, . . . , xn] := [x1, [x2, [· · · , [xn−1, xn] · · · ].

We let “?” denote the symmetric product: a ? b = 1
2 (ab+ ba). Let Sym(X) denote

the symmetric group on the set X, and let G := Sym({x, y, v}) × Sym({u, z}) ⊂
Sym({x, y, z, u, v}). Let AltG =

∑
g∈G sgn(g)g ∈ C[G].

Proof of Theorem 1.3. The proof is a double induction, first on k, then on j. The
base of induction is (j, k) = (3, 1), as the trivial case (1, 1) is not sufficient for the
induction step.

Lemma 6.1. [M3, L1] ⊂ L4.

Proof. We show that [x[y, z, u], v] ∈ L4; letting x, y, z, u, v range over all monomials,
we span [M3, L1], proving the lemma. We may replace [x[y, z, u], v] by [x?[y, z, u], v],
as they are congruent modulo L5. The following two identities are straightforward:

[x ? [y, z, u], v] + [y ? [x, z, u], v] = [[x ? y, z, u], v] ∈ L4

[x ? [y, z, u], v] + [v ? [y, z, u], x] = −[x ? v, y, z, u] ∈ L4.

Together they imply that [x ? [y, z, u], v] is alternating for G, modulo L4. Finally,
we have the following identity, which may be verified directly on coefficients of the(

5
2

)
= 10 monomials where x is left of y is left of v and z is left of u:

AltG[x ? [y, z, u], v] = AltG[u, x, y, z ? v].

We conclude that [x[y, z, u], v] ∈ L4. �

Lemma 6.2. [M3, Lk] ⊂ Lk+3.
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Proof. Consider [a[b, c, d], l], with l ∈ Lk. Write l = [x, y], where x ∈ L1, y ∈ Lk−1.
We have

[a[b, c, d], [x, y]] = [[a[b, c, d], x], y] + [x, [a[b, c, d], y]] ⊂ Lk+3,

by induction. �

To conclude the proof of the theorem, we consider a general element [m, l]
with m ∈ Mj , and l = [l1, . . . , lk] ∈ Lk. Write m = a[b, c, d], where d ∈ Lj−2.
Then by Lemma 6.1, we have that [a[b, c, d], l] ⊂ Lk+3(a, b, c, d, l1, . . . lk), meaning
that we regard d as a variable instead of an iterated bracket. Each summand in
Lk+3 is an iterated bracket of linear and quadratic expressions in the variables
a, b, c, d, l1, . . . lk. By repeated application of the Jacobi identity, we may assume
that all summands are of the form [y1, . . . , yk+2, yk+3d], for various permutations
{y1, . . . , yk+3} = {a, b, c, l1, . . . , lk}. We now plug in d = [d1, . . . , dj−2]. Then
[yk+2, yk+3d] ⊂ Lj−1 by induction, which concludes the proof of the theorem. �

As a corollary, we can give an affirmative answer to the “if” direction of Conjec-
ture 3.6 from [EKM].

Proof of Corollary 1.4. We may assume k is odd. Clearly it is enough to show
that LjLk ⊂ Mj+k−1. Let a ∈ A, x ∈ Lj−1, y ∈ Lk. Then we have [x, a]y =
[x, ay]− a[x, y]. The LHS is a completely general generator of LjLk. By Theorem
1.3, both the terms on the RHS are in Mj+k−1. �

7. Applications of Theorem 1.3 to the modules Bk

Lemma 7.1. B4 = [A≤2, B3].

Proof. In [AJ], it has been shown that

B4 = [A≤2, B3] +
∑

x,y,z∈A1

[x[y, z], B3].

Thus our task is to show that each summand [x[y, z], B3] is actually contained in
the span of iterated brackets with only quadratic or linear outermost expression.
We consider a general element of this form, [x[y, z], u, v, w], where we assume that
u and v are either linear or quadratic (w is arbitrary). Then we have:

[x[y, z], u, v, w] = [u, x[y, z], v, w] + [[x[y, z], u], v, w].

The Leibniz rule implies that [x[y, z], u]− [x, y][z, u] ∈ M3. Thus by Theorem 1.3,
we have:

[[x[y, z], u], v, w] = [[x, y][z, u], [v, w]] = [[z, u], [x, y][v, w]] + [[x, y], [z, u][v, w]] mod L5

= [[z, u], [x, y[v, w]]] + [[x, y], [z, u[v, w]]] mod L5.(3)

We now observe that each of the above expressions has only a single term of degree
higher than two. By repeated use of Jacobi identity, we can put that term in the
innermost slot. We have established the corollary. �

Proof of Corollary 1.5. Case 1: m is odd.
Let us consider the element [x[y, z], w, v] ∈ Bk, where v = [v1, . . . , vk−2] is some

iterated bracket expression. By Lemma 5.2 of [AJ], we have:

[x[y, z], [w, v]]− [x, [w[y, z], v]] + [y, [w[x, z], v]]− [z, [w[x, y], v]] ∈ L4(x, y, z, w, v),
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meaning that we regard v as a variable, rather than as an iterated commutator.
Each summand in L4 is necessarily an iterated bracket of linear and quadratic ex-
pressions in the variables x, y, z, w, v. By repeated application of the Jacobi identity,
we may assume that all summands are of the form [a1, . . . , a4v] for various permu-
tations {a1, . . . , a4} = {x, y, z, w}. We now plug in v = [v1, . . . , vk−2]. Theorem 1.3
implies [a3, a4v] ∈ Lk−1, which concludes the proof.

Case 2: m is even.
We have already addressed the case k = 4. Let us consider the element [x[y, z], u, v, w]

of Bk, where w = [w1, . . . , wk−3]. We may repeat the arguments of Lemma 7.1 up
to equation (3) without significant modification. By Theorem 1.3, both terms on
the RHS are in fact zero in Bk, which concludes the proof. �

Proof of Corollary 1.6. The proof of [AJ], Lemma 5.4, applies here without signif-
icant modification. �

Proof of Corollary 1.7. First, let n = 2; the first corollary implies that if Fλ occurs
in Bk(A2), then |λ| ≤ 2k−3. Moreover, the modules F(r) do not appear in Bk(A2),
for k ≥ 2, as C[z1] is a commutative algebra. Thus λ must have at least two rows,
so that |λ| ≤ 2k − 5.

We proceed by induction on n. Consider some Fλ which occurs in Bk(An). If
λ has less than n rows, let µ = (λ1, . . . , λn−1), then it follows that Fµ occurs in

Bk(An−1), so that |λ| = |µ| ≤ 2k − 5, by the induction hypothesis. Thus we may
assume λ has exactly n rows. Then the first corollary implies:

|λ| = |λ| − n ≤ 2k − 3 + 2

⌊
n− 2

2

⌋
− n ≤ 2k − 5.

�

Let λ be a Young diagram, and recall that Gλ(V ) = Sλ(V )⊗Ωev(V ). Proposition
1.8 now follows, using the techniques of Section 3 and 4.

For a graded vector space M , recall that M [d] denotes the dth graded component.
Then we have:

Proof of Corollary 1.9. By Lemma 7.1 and Theorem 1.5, we have a surjections
A⊗k−2
≤2 ⊗ Ωev � Bk. A⊗k−2

≤2 is finite dimensional, while dim Ωev[d] is a polynomial
of degree m+ n− 1 in d. �

8. Open questions and conjectures

While Corollary 1.9 states that the Bk(Am|n) exhibit polynomial growth, com-
puter experiments suggest something stronger:

Conjecture 8.1. For all algebras Am|n, the Hilbert series of Bk, k ≥ 3 are rational
functions with denominator

∏
i(1− ui)

∏
(1− vj).

In the completely even case, this is a theorem of [DE], following from the de-
scription of Bk as a finite iterated extension of the modules Fλ. In general, this
conjecture would follow as a corollary from the following strengthening of Proposi-
tion 1.8:

Conjecture 8.2. Let k ≥ 3. There exists a finite collection Λ of Young diagrams
λ, and an isomorphism of abstract Schur functors V 7→ Bk(T (V )) ∼= ⊕λ∈ΛGλ.
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One approach to this conjecture is to consider the family A = An as n → ∞,
along the lines of Sections 3 and 4. While each Bk(An) has a finite length Jordan-
Hölder series consisting of modules Fλ with |λ| ≤ 2k − 5, there is currently no
control over the first column of λ as n varies. The conjecture states that as n
grows, the new diagrams to appear are precisely those obtained from an earlier
diagram by adding two boxes in the first column. Towards a possible explanation,
we observe that not only the Lie algebra Wn, but a larger Lie algebra acts on each
Bk:

Proposition 8.3. Let A = An. We have Der(A/M3) ∼= W̃n := ⊕iΩev∗ ⊗ ∂i, with
the Lie bracket:

[a∂i, b∂j ] = (a ∗ ∂i(b))∂j − (b ∗ ∂j(a))∂i,

where ∂i(a) is the Lie derivative, and ∗ is the Fedosov product.

Proof. A/M3 is an A-bimodule via the projection π : A→ A/M3. Clearly,

DerA(A,A/M3) ∼= A/M3 ⊗ V ∗ ∼= Ωev∗ (V )⊗ V ∗,
by Theorem 2.4. Since any derivation of A preserves the ideal M3, it descends to a
derivation of Der(A/M3). �

Remark 8.4. W̃n has a nilpotent ideal consisting of the forms of nonzero degree;
the quotient by this ideal may be identified with Wn. In general, for a symmetric

tensor category C, and V ∈ C, one can define the analogous Lie algebras W̃ (V )

and W (V ) ∈ C-Lie. In particular, for A = Am|n, one has the Lie algebras W̃m|n

and Wm|n; however the kernel of the map W̃m|n → Wm|n can be rather large; for

instance in the completely odd setting, W0|n is finite dimensional, while W̃0|n is
infinite dimensional.

It follows as in [FS] that the Lie algebra W̃n acts on each Bk. The following
conjecture can be checked for B1, B2, and B3 from their explicit descriptions. Let
us denote the pth multi-graded part of a multi-graded vector space M by M [p].
Let E :=

∑
xi∂i denote the Euler operator.

Conjecture 8.5. The operator D := [xn+1, xn+2]E ∈ W̃n+2 is an injection D :
Bk[d1, . . . , dn, 0, 0] ↪→ Bk[d1, . . . , dn, 1, 1].

Let M be a Wn-module. We call v ∈M singular if ∂iv = 0 for i = 1, . . . n, and we
denote by Msing the vector subspace of singular vectors. Msing is a gln-submodule
of M . Let O denote the category of Wn-modules satisfying the conditions of The-
orem 2.3, and let O◦ denote the full subcategory of O consisting of modules whose
Jordan-Hölder series do not contain λ = (1k) for any k. The following proposition
is a consequence of Theorem 2.2, together with the character formula for Fλ:

Proposition 8.6. Every M ∈ O◦ is generated by Msing as a W 0
n-module. The

multiplicity of Fλ in the Jordan-Hölder series of M is equal to the multiplicity of
Vλ in Msing.

Proposition 8.7 (see, e.g, [AJ], Lemma 5.1). For k ≥ 3, and for all n, Bk(An) ∈ O◦.

The operator D preserves the vector subspace Bsingk , and moreover maps highest
weight vectors to highest weight vectors for the gln action. Let mk,λ denote the
multiplicity of Vλ in Bk (and thus by Proposition 8.6, the multiplicity of Fλ in Bk).
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Then 8.5 would imply that mk,λ ≤ mk,(λ,1,1). On the other hand, Conjecture 1.8
implies that the mk,λ are bounded from above, uniformly in n and λ, since each Gµ
contains any Fλ (regarded here as a gln-module) as a summand at most once. Thus
Conjecture 8.5 would imply that the sequence mk,(λ,12j) is both non-decreasing, and
bounded from above, hence eventually constant, implying Conjecture 8.2.
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