
TORUS ACTIONS AND TENSOR PRODUCTS OF INTERSECTION COHOMOLOGY

ASILATA BAPAT

ABSTRACT. Given certain intersection cohomology sheaves on a projective variety with a torus action, we relate the
cohomology groups of their tensor product to the cohomology groups of the individual sheaves. We also prove a similar
result in the case of equivariant cohomology.

1. INTRODUCTION

Let X be a smooth complex projective variety together with an action of an algebraic torus T with isolated fixed
points. We fix a regular algebraic one-parameter subgroup λ: C∗→ T , which means that the set of λ-fixed points
on X equals the set of T -fixed points on X (denoted X T ). Consider the Białynicki-Birula decomposition (see, e.g.,
[BB73]) of X : for each w ∈ X T define the plus and minus cells to be respectively

Uw = U+w = {x ∈ X | lim
t→0
λ(t) · x = w}, t ∈ C∗, and

U−w = {x ∈ X | lim
t→∞

λ(t) · x = w}, t ∈ C∗ .

Each plus or minus cell is a λ-stable affine space, and hence the decompositions X =
∐

w∈X T Uw and X =
∐

w∈X T U−w
are cell decompositions. For the purposes of this paper, we make the following additional assumptions on the
T -action on X .

Assumption 1.1. The cell decompositions X =
∐

w∈X T Uw and X =
∐

w∈X T U−w are algebraic stratifications of X . In
particular, the closure of every plus (resp. minus) cell is a union of plus (resp. minus) cells.

Assumption 1.2. For each w ∈ X T , there is a one-parameter subgroup λw : C∗→ T and a neighbourhood Vw of w
such that limt→0λw(t) · v = w for every v ∈ Vw and t ∈ C∗.

Through most of this paper, we use the word sheaf to mean an object in Db
c,BB(X ,C), the bounded derived

category of sheaves of C-vector spaces on X that are constructible with respect to the Białynicki-Birula stratification.
(Here we make use of Assumption 1.1.) Moreover all functors are derived, so for ease of notation we omit the
decorations R and L.

For each w ∈ X T , let ICw denote the intersection cohomology sheaf on the closure of the cell Uw, extended by
zero to all of X . The main theorem of the paper describes the cohomology of the tensor products of a collection of
ICw, in terms of the tensor products of the cohomologies of the individual ICw.

1.1. Main result. Let ∆: X → X m be the diagonal embedding. Consider any sheaves F 1, . . . ,Fm in Db
c,BB(X ,C).

Then their (derived) tensor product is also a sheaf in Db
c,BB(X ,C), and will be denoted by F 1⊗· · · ⊗Fm. Recall

that
F 1⊗· · · ⊗Fm =∆

−1(F 1� · · ·�Fm).

For any sheaf F , its cohomology H• (F ) = H• (X ,F ) is a graded vector space. There is a natural cup-product
∪: H• (F 1)⊗ · · · ⊗H• (Fm)→ H• (F 1⊗· · · ⊗Fm), defined in Subsection 2.2.

Let C denote the constant sheaf on X . For any sheaf F , its cohomology H• (F ) is naturally a (graded) left and
right module over the (graded) ring H(X ) = H•

�

X ,C
�

, as follows:

∪: H(X )⊗H• (F )→ H•
�

C⊗F
� ∼=−→ H• (F ) ,

∪: H• (F )⊗H(X )→ H•
�

F ⊗C
� ∼=−→ H• (F ) .
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Moreover, the cup-product descends to a morphism

H• (F 1) ⊗
H(X )
· · · ⊗

H(X )
H• (Fm)→ H• (F 1⊗· · · ⊗Fm) .

Theorem 1.3. Let (p1, . . . , pm) be an m-tuple of T -fixed points of X . If the assumptions 1.1 and 1.2 hold, then the
cup-product map

(1) H•
�

ICp1

�

⊗
H(X )
· · · ⊗

H(X )
H•
�

ICpm

�

→ H•
�

ICp1
⊗· · · ⊗ ICpm

�

is an isomorphism.

Since X is a T -space, each IC sheaf ICp j
carries a canonical T -equivariant structure, and so does the tensor

product ICp1
⊗· · · ⊗ ICpm

. Let HT (X ) = H•T (X ,C) be the T -equivariant cohomology of X . For any T -equivariant
sheaf F on X , its T -equivariant cohomology H•T (F ) = H•T (X ,F ) is a graded HT (X )-module. As before, there is a
cup-product map for T -equivariant cohomology, which factors through HT (X ).

Theorem 1.4. Under the assumptions 1.1 and 1.2, the cup-product map

H•T
�

ICp1

�

⊗
HT (X )

· · · ⊗
HT (X )

H•T
�

ICpm

�

→ H•T
�

ICp1
⊗· · · ⊗ ICpm

�

is an isomorphism.

Remark 1.5. Even though our results are stated using IC sheaves, it is possible that they generalize to parity
sheaves (defined and discussed by Juteau, Mautner, and Williamson in [JMW]). Our results and proof methods
are similar to the main theorem from Ginzburg’s paper [Gin91]. In [AR13, Theorem 4.1], Achar and Rider prove
a version of Ginzburg’s theorem for parity sheaves on generalized flag varieties of a Kac-Moody group. Similar
generalizations may work in our case as well.

2. SETUP

2.1. The Białynicki-Birula stratification. One can find (see, e.g. [Sum74] or [Kam66]) a T -equivariant projective
embedding of X into some PN , such that the action of T on PN is linear. Consider the following standard Morse-Bott
function on PN :

[z0 : · · · : zN ] 7→

∑N
i=0 ci |zi |2
∑N

i=0 |zi |2
,

where ci are the weights of the λ-action on PN . The critical sets of this function are precisely the T -fixed points
on PN . The Morse-Bott cells of this function are locally closed algebraic subvarieties of PN . Since X has isolated
T -fixed points, one can show that the composition f : X → PN → R is a Morse function with critical set X T (see,
e.g. [Aud04]). Each cell of the Morse decomposition under f is a preimage of a Morse-Bott cell of PN . Hence it is
a locally closed algebraic subvariety of X . Moreover, each cell of the Morse decomposition is known to be a union
of Białynicki-Birula plus-cells. A discussion of this may also be found [CG10, Section 2.4].

The collection of fixed points of the λ-action carries a partial order, where v < w if Uv ⊂ Uw. By the previous
discussion, we see that v < w iff f (v)< f (w). Fix a weakly increasing enumeration {0, 1, . . . , N} of the points of
X T (sometimes denoted {w0, . . . , wN}), and set Xn =

⋃

i≤n Ui . Since the closure of every plus cell is a union of
plus cells, it follows from the previous discussion that each Xn is a closed subvariety of X .

Similarly, set X−n =
⋃

i≥n U−i . By using the Morse function (− f ) instead of f , we see that each X−n is a closed
subvariety of X . Hence we obtain two increasing filtrations of X by closed subvarieties: X0 ⊂ · · · ⊂ XN = X and
X−N ⊂ · · · ⊂ X−0 = X .

We have the following inclusions:

Xn
in
,→ X , Xn−1

v
,→ Xn

u
←- Un.

For any point p ∈ X−n , we have f (wn) ≤ f (p), with equality only if p ∈ X T . For any point p ∈ Xn, we have
f (p) ≤ f (wn), with equality only if p ∈ X T . Hence if p ∈ X−n ∩ Xn, then f (p) = f (wn), and p ∈ X T . But
X−n ∩ Xn ∩ X T = {wn}, and it follows that p = wn. Hence for every n, the subvarieties X−n and Xn intersect
transversally in the single point wn.

Let cn ∈ H• (X ) be the Poincaré dual to the homology class of X−n . As a vector space, H• (X ) is generated by the
collection {cn}. Finally, fix an m-tuple (p1, . . . , pm) of T -fixed points of X , and set L j,n = i−1

n ICp j
for each j and n.
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2.2. The cup-product in cohomology. Let π: X → pt be the unique morphism to a point. For any sheaf F on
X , its cohomology H• (F ) is a graded vector space, and may be thought of as π∗F . We use this to define the
cup-product map.

Recall that the functors (π−1,π∗) form an adjoint pair, which has a counit π−1 ◦π∗→ id. Let F 1, . . . ,Fm be
sheaves on X . Tensoring the counit maps together, we have a map

π−1 ◦π∗(F 1)⊗ · · · ⊗π−1 ◦π∗(Fm)→F 1⊗· · · ⊗Fm .

The left hand side is canonically isomorphic to π−1(π∗F 1⊗· · · ⊗π∗Fm). Using the (π−1,π∗) adjunction once
more, we obtain the cup-product:

∪: π∗F 1⊗· · · ⊗π∗Fm→ π∗(F 1⊗· · · ⊗Fm).

The cup-product gives each H• (F i) the structure of a left and right module over H(X ). This module structure
induces the following map, also called the cup-product:

H• (F 1) ⊗
H(X )
· · · ⊗

H(X )
H• (Fm)→ H• (F 1⊗· · · ⊗Fm) .

Proposition 2.1. For every n, the cup-product map

(2) H•
�

L1,n

�

⊗
H(X )
· · · ⊗

H(X )
H•
�

Lm,n

�

→ H•
�

L1,n ⊗ · · · ⊗ Lm,n

�

is an isomorphism.

When Xn = X , we have L j,n = ICp j
for each j. Hence Theorem 1.3 follows from this proposition, and we now

focus on proving the proposition.

3. PROOF OF THE ISOMORPHISM

We prove Proposition 2.1 by induction on the nth filtered piece of X0 ⊂ · · · ⊂ XN . In the base case of n= 0, the
space X0 is zero-dimensional. Hence each sheaf L j,0 is isomorphic to its cohomology. In this case the cup-product
map (2) reduces to the identity map, which is an isomorphism.

Now we prove the induction step on the filtered piece Xn. We mainly use the following distinguished triangles:

u!u
−1 L j,n→ L j,n→ v∗v

−1 L j,n,(3)

v!v
! L j,n→ L j,n→ u∗u

−1 L j,n.(4)

After taking cohomology, each of the above distinguished triangles produces a long exact sequence. In our case,
all connecting homomorphisms of these long exact sequences vanish (see, e.g. [Soe90, Lemma 20] and [Gin91,
Proposition 3.2]).

For brevity, we will use the following notation through the remainder of the paper.

(5)

Mm,n = L2,n ⊗ · · · ⊗ Lm,n,

Am,n = H•
�

L2,n

�

⊗
H(X )
· · · ⊗

H(X )
H•
�

Lm,n

�

,

Bm,n = H•
�

u∗u
−1 L2,n

�

⊗
H(X )
· · · ⊗

H(X )
H•
�

u∗u
−1 Lm,n

�

.

The following two lemmas prove the proposition on the open part Un in Xn.

Lemma 3.1. Let F and G be any complexes of sheaves on Un with locally constant cohomology sheaves. Then the
cup-product map

∪: H• (u!F )⊗H• (u∗G )→ H• (u!F ⊗u∗G )
is an isomorphism. Since ∪ factors through the surjection

H• (u!F )⊗H• (u∗G )�H• (u!F ) ⊗
H(X )

H• (u∗G ) ,

the induced cup-product
∪: H• (u!F ) ⊗

H(X )
H• (u∗G )→ H• (u!F ⊗u∗G )

is also an isomorphism.

Proof. Consider the following commutative diagram, where π is the projection to a point.
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Un Xn

pt

u

p=π◦u π

Recall that if A and B are any two complexes on X , then the cup-product is induced by adjunction from the
natural map

π−1(π∗A⊗π∗B)∼= π−1π∗A⊗π−1π∗B→ A⊗ B,

which may be broken up as follows:

π−1π∗A⊗π−1π∗B→ A⊗π−1π∗B→ A⊗ B.

Therefore the cup-product map may be broken up as follows:

π∗A⊗π∗B→ π∗(A⊗π−1π∗B)→ π∗(A⊗ B).

In our case, this becomes the following sequence of maps:

π∗u!F ⊗π∗u∗G
µ1−→π∗(u!F ⊗π−1π∗u∗G )

µ2−→π∗(u!F ⊗u∗G ).

Since π is a proper map, we know that π∗ ∼= π!, and hence µ1 is an isomorphism by the projection formula. It
remains to show that µ2 is an isomorphism.

The pair of adjoint functors (π−1,π∗) gives the counit morphism p−1p∗G → u−1u∗G . The key observation is
that this map is an isomorphism, because G is a direct sum of its cohomology sheaves on the affine space Un. Now
consider the following commutative diagram.

(6)

u!F ⊗π−1π∗u∗G u!(F ⊗p−1p∗G )

u!F ⊗u∗G u!(F ⊗u−1u∗G )

∼=
(proj.)

µ2 (counit) ∼= (counit)

∼=
(proj.)

The map µ2 is obtained by applying the functor π∗ to the left vertical map in (6) above. The diagram shows that
this map is an isomorphism, and hence µ2 is also an isomorphism. �

Lemma 3.2. The cup-product map induces an isomorphism

H•
�

u!u
−1 L1,n

�

⊗
H(X )

Bm,n

∼=→ H•c
�

u−1(L1,n ⊗Mm,n)
�

.

Proof of lemma. Using Lemma 3.1 for F = u−1 L1,n and G = u−1 L2,n, we obtain an isomorphism

H•
�

u!u
−1 L1,n

�

⊗
H(X )

H•
�

u∗u
−1 L2,n

� ∼=−→H•
�

u!u
−1 L1,n ⊗ u∗u

−1 L2,n

�

.

Moreover, we know that u−1u∗u
−1 L2,n

∼= u−1 L2,n. Using this fact and the projection formula, we have

H•
�

u!u
−1 L1,n ⊗ u∗u

−1 L2,n

�∼= H•
�

u!

�

u−1 L1,n ⊗ u−1u∗u
−1 L2,n

��

∼= H•
�

u!u
−1(L1,n ⊗ L2,n)

�

.

All together, we get an isomorphism

H•
�

u!u
−1 L1,n

�

⊗
H(X )

H•
�

u∗u
−1 L2,n

� ∼=→ H•
�

u!u
−1(L1,n ⊗ L2,n)

�

,

which can be written in our previously-introduced notation as

H•
�

u!u
−1 L1,n

�

⊗
H(X )

B2,n

∼=→ H•
�

u!u
−1(L1,n ⊗M2,n)

�

.
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Now we can successively tensor the above map over H(X ) with the spaces H•
�

u∗u
−1 Li,n

�

, with i ranging from
3 to m. Each time, we apply Lemma 3.1 for F = u−1(L1,n ⊗Mi−1,n) and G = u−1 Li,n and use the argument above.
Ultimately this construction yields

H•
�

u!u
−1 L1,n

�

⊗
H(X )

Bm,n

∼=→ H•
�

u!u
−1(L1,n ⊗Mm−1,n)

�

⊗
H(X )

H•
�

u∗u
−1 Lm,n

�

∼=→ H•
�

u!(u
−1(L1,n ⊗Mm,n))

�

∼= H•c
�

u−1(L1,n ⊗Mm,n)
�

.

�

The next lemma is a refinement of a standard cohomology exact sequence to our particular case.

Lemma 3.3. There is an exact sequence

H•
�

u!u
−1 L1,n

�

⊗
H(X )

Bm,n→ H•
�

L1,n

�

⊗
H(X )

Am,n→ H•
�

v∗v
−1 L1,n

�

⊗
H(X )

Am,n→ 0.

Proof. Consider the distinguished triangle (3) for the sheaf L1,n. Taking cohomology and applying the functor
(−) ⊗

H(X )
Am,n, we obtain the right-exact sequence

H•
�

u!u
−1 L1,n

�

⊗
H(X )

Am,n
f
−→H•

�

L1,n

�

⊗
H(X )

Am,n
g
−→H•

�

v∗v
−1 L1,n

�

⊗
H(X )

Am,n→ 0.

Using the distinguished triangles (4) for each of the sheaves L j,n for j ≥ 2, we have surjective morphisms

H•
�

L j,n

�

�H•
�

u∗u
−1 L j,n

�

.

Taking the tensor product of all of these along with H•
�

u!u
−1 L1,n

�

, we obtain a surjective morphism

H•
�

u!u
−1 L1,n

�

⊗
H(X )

Am,n
h
�H•

�

u!u
−1 L1,n

�

⊗
H(X )

Bm,n.

We now show that the map f factors through the map h, by showing that f (ker h) = 0. Since all boundary
maps in the cohomology long exact sequence of the triangles (4) vanish, the following set generates ker h:

{a1 ⊗ a2 ⊗ · · · ⊗ an | a j ∈ H•
�

v∗v
! L j,n

�

for some 2≤ j ≤ m}.

Consider any element a1⊗ a2⊗ · · ·⊗ an ∈ ker h. Suppose that a j ∈ H•
�

v∗v
! L j,n

�

. Recall the following commutative
diagram, which is the content of [Gin91, 3.8a].

H•
�

v∗v
! L j,n

�

H•
�

L j,n

�

H•
�

u−1 L j,n

�

H•
�

L j,n

�

H•c
�

u−1 L j,n

�

cn cn ∼=

From this diagram it follows that cna j = 0, and that a1 ∈ cnH•
�

L1,n

�

. Since all tensor products are over H(X ), the
image of h(a1 ⊗ · · · ⊗ an) under f must be zero. Therefore f factors through h, and we obtain the desired short
exact sequence. �

Finally, we use the induction hypothesis to tackle the right side of the right-exact sequence from the previous
lemma.

Lemma 3.4. The cup-product map induces an isomorphism

H•
�

v∗v
−1 L1,n

�

⊗
H(X )

Am,n

∼=→ H•
�

L1,n−1 ⊗Mm,n−1

�

.
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Proof of lemma. The cup-product map on the left hand side is the following composition:

H•
�

v∗v
−1 L1,n

�

⊗
H(X )

Am,n→ H•
�

v∗v
−1 L1,n

�

⊗
H(X )

H•
�

Mm,n

�

→ H•
�

v∗v
−1 L1,n ⊗Mm,n

�

,

where the first map is the cup-product on the last (m− 1) factors, and the second map is the cup-product of the
first factor with the rest. The projection formula also shows that

H•
�

v∗v
−1 L1,n ⊗Mm,n

�∼= H•
�

v−1 L1,n ⊗ v−1Mm,n

�∼= H•
�

L1,n−1 ⊗Mm,n−1

�

.

By induction on m, we may assume that the cup-product Am,n→ H•
�

Mm,n

�

is an isomorphism, and hence the
first map above is an isomorphism. It remains to show that the following map is an isomorphism:

H•
�

v∗v
−1 L1,n

�

⊗
H(X )

H•
�

Mm,n

�

→ H•
�

v∗v
−1 L1,n ⊗Mm,n

�

The element cn ∈ H acts on H•
�

v∗L1,n−1

�

by zero, since L1,n−1 is supported on Xn−1. Recall from [Gin91] that
the cokernel of cn on H•

�

Mm,n

�

is just H•
�

Mm,n−1

�

. Hence

H•
�

v∗v
−1 L1,n

�

⊗
H(X )

H•
�

Mm,n

�∼= H•
�

L1,n−1

�

⊗
H(X )

H•
�

Mm,n−1

�

.

Hence the map above can be rewritten as the cup-product map

H•
�

L1,n−1

�

⊗
H(X )

H•
�

Mm,n−1

�

→ H•
�

L1,n−1 ⊗Mm,n−1

�

,

which is an isomorphism by the induction hypothesis. �

We now apply Saito’s theory of mixed Hodge modules ([Sai90, Sai88]) to obtain another short exact sequence,
as follows. Every IC-sheaf has the additional structure of a pure mixed Hodge module, which induces a mixed
Hodge structure on tensor products of the Li,n.

Lemma 3.5.

(i) The cohomology H•
�

L1,n ⊗Mm,n

�

is pure.
(ii) There is a short exact sequence

0→ H•c
�

u−1(L1,n ⊗Mm,n)
�

→ H•
�

L1,n ⊗Mm,n

�

→ H•
�

L1,n−1 ⊗Mm,n−1

�

→ 0.

Proof. The proof is by induction on n. When n = 0, we have X−1 = ; and U = X0. The open inclusion u is the
identity map, and the closed inclusion v is the zero map, hence (ii) is clear in the base case.

The set X0 consists of a single, T -fixed point of X . Call this point w. By Assumption 1.2, there exists a
neighborhood Vw of w and a one-parameter subgroup λw : C∗ → T that contracts Vw to w. Let iw denote the
inclusion of {w} into the corresponding Vw. Let jw denote the inclusion of Vw into X . By applying [Spr84, Corollary
1] or [Bra03, Lemma 6] to the sheaves j−1

w ICpi
for each i, we see that

H•
�

Vw, j−1
w ICpi

�∼= H•
�

i−1
w j−1

w ICpi

�

= H•(Li,0).

The functor H•(Vw, j−1
w (−)) weakly increases weights, while the functor H•(i−1

w j−1
w (−)) weakly decreases weights.

Hence H•(Li,0) is pure for each i. Taking the tensor product, we see that H•(L1,0)⊗ · · · ⊗H•(Lm,0) is pure. Since w
is a single point, we can naturally make the following identification:

H•(L1,0)⊗ · · · ⊗H•(Lm,0)∼= H•
�

L1,0 ⊗ · · · ⊗ Lm,0

�

= H•
�

L1,0 ⊗Mm,0

�

.

Hence H•
�

L1,0 ⊗Mm,0

�

is pure, and (i) is proved in the base case. A similar argument has been used in Lemma
3.5 of [Gin91].

For the induction step, consider the distinguished triangle (3) for L1,n. Apply the functor
�

−⊗ L2,n ⊗ · · · ⊗ Lm,n

�

,
which may be written as

�

−⊗Mm,n

�

in the notation of (5). This yields the following distinguished triangle:

u!u
−1 L1,n ⊗Mm,n→ L1,n ⊗Mm,n→ v∗v

−1 L1,n ⊗Mm,n.

By a repeated application of the projection formula, we may write the first term of this triangle as

u!u
−1 L1,n ⊗Mm,n

∼= u!

�

u−1 L1,n ⊗ · · · ⊗ u−1 Lm,n

�

= u!u
−1
�

L1,n ⊗Mm,n

�

,
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and the third term of this triangle as

v∗v
−1 L1,n ⊗Mm,n

∼= v∗
�

v−1 L1,n ⊗ · · · ⊗ v−1 Lm,n

�

= v∗
�

L1,n−1 ⊗Mm,n−1

�

.

Taking cohomology, we obtain the following long exact sequence:

· · · → H•c
�

u−1(L1,n ⊗Mm,n)
�

→ H•
�

L1,n ⊗Mm,n

�

→ H•
�

L1,n−1 ⊗Mm,n−1

�

→ ·· · .

The term H•
�

L1,n−1 ⊗Mm,n−1

�

is pure by the induction hypothesis.
From Lemma 3.2, we know that

H•c
�

u−1
�

L1,n ⊗Mm,n

��∼= H•c (u
−1 L1,n) ⊗

H(X )
H•(u−1 L2,n) ⊗

H(X )
· · · ⊗

H(X )
H•(u−1 Lm,n).

Recall that Un is the Białynicki-Birula plus-cell for the fixed point wn. Hence the λ-action contracts Un to wn. By
[Spr84, Corollary 2], we know that H•c

�

u−1 L1,n

�

is isomorphic to the costalk of u−1 L1,n at wn, which is isomorphic
to a shift of the stalk of ICp1

at wn. For any i > 1, we know by [Spr84, Corollary 1] that H•
�

u−1 Li,n

�

is isomorphic
to the stalk of u−1 Li,n at wn, which is equal to the stalk of ICpi

at wn. By using Assumption 1.2 and the argument
used earlier in this proof, we know that the stalk of each ICpi

at any T -fixed point is pure, and hence the spaces
H•c
�

u−1 L1,n

�

as well as H•
�

u−1 Li,n

�

for i > 1 are all pure. Therefore the tensor product H•c
�

u−1
�

L1,n ⊗Mm,n

��

is
pure.

Since the terms on either side of the long exact sequence are pure, the connecting homomorphisms are zero,
and hence H•

�

L1,n ⊗Mm,n

�

is also pure. This argument completes the induction step, and hence completes the
proof. �

Putting together the exact sequences from Lemma 3.3 and Lemma 3.5, we obtain the following commutative
diagram, where the vertical maps are induced by cup-products. In particular, the middle map b is just the map
from Proposition 2.1.

(7)

H•
�

u!u
−1 L1,n

�

⊗
H(X )

Bm,n H•
�

L1,n

�

⊗
H(X )

Am,n H•
�

v∗v
−1 L1,n

�

⊗
H(X )

Am,n 0

0 H•c
�

u−1(L1,n ⊗Mm,n)
�

H•
�

L1,n ⊗Mm,n

�

H•
�

L1,n−1 ⊗Mm,n−1

�

0

a b c

The leftmost map a is an isomorphism by Lemma 3.2. The rightmost map c is an isomorphism by Lemma 3.4.
By the snake lemma, the middle map b is an isomorphism as well, and Proposition 2.1 is proved.

4. COMPUTATION OF EQUIVARIANT COHOMOLOGY

Consider a smooth complex projective variety X with the same assumptions as in Section 1. The goal of this
section is to prove Theorem 1.4.

First we recall some constructions in equivariant cohomology. The main references are [BL94] and [GKM98].
Fix a universal principal T -bundle ET → BT , where ET (respectively BT) is the direct limit over m of algebraic
approximations ETm (respectively BTm). Consider the following diagram, where the map p is the second projection,
and the map q is the quotient by the diagonal T -action.

ET × X

X ET ×T X

p q

Since each stratum Un is a locally closed T -invariant affine subvariety of X , the trivial local system on Un gives

rise to a canonically-defined sheaf ICn on ET ×T X , and a canonical isomorphism β : p−1 ICn

∼=−→q−1ICn (see, e.g.,
[BL94]). The triple (ICn, ICn,β) is called the equivariant IC sheaf corresponding to Un.

7



4.1. Equivariant homology and cohomology. For any variety Y equipped with a T -action, the cohomology of
ET ×T Y is called the equivariant cohomology of Y , and is denoted by H•T (Y ). In particular, since ET ×T pt∼= BT ,
we have H•T (pt) ∼= H• (BT ). The space H•T (Y ) is a ring under cup-product, and is also an HT (X )-module via
pullback under the projection Y → pt. For convenience, we will denote H•T (X ) by HT (X ). In our case, HT (X ) is
isomorphic to H•(X )⊗H• (BT ) as an HT (X )-module (see, e.g., [GKM98, Theorem 14.1]). Similarly, the equivariant
cohomology of any T -equivariant sheaf on X also carries an HT (X )-module structure.

One can define the T -equivariant Borel-Moore homology of X , denoted HT
• (X ). Every T -equivariant closed

subvariety Y of X defines a class [Y ]T of degree 2 dimC Y in HT
• (X ). If X is smooth, then every class [Y ]T has an

equivariant Poincaré dual cohomology class in H•T (X ). More details can be found in [Gra01] and [Bri00].

4.2. Proof of the equivariant case. Consider an m-tuple (p1, . . . , pm) of T -fixed points of X . Then ICp1
, . . . , ICpm

are the IC sheaves corresponding to Up1
, . . . , Upm

respectively. Let L j,n = i−1
n ICp j

for each j and n.

Proposition 4.1. Under the assumptions 1.1 and 1.2, the cup-product maps

H•T
�

L1,n

�

⊗
HT (X )

· · · ⊗
HT (X )

H•T
�

Lm,n

�

→ H•T
�

L1,n ⊗ · · · ⊗ Lm,n

�

are isomorphisms for each n.

When Xn = X , we have L j,n = ICp j
for each j. Hence this proposition implies Theorem 1.4. To prove the

proposition, we first state two general lemmas about T -equivariant cohomology of sheaves.

Lemma 4.2. Consider the fiber bundle ET ×T X → BT, with fiber X . Let ICw be the (T-equivariant) IC sheaf on
the closure of a stratum Xw, extended by zero to all of X . Then the Leray spectral sequence for the computation of
H•T (X ; ICw) = H•

�

ET ×T X ; ICw

�

collapses at the E2-page. Hence H•T (ICw) is isomorphic to H• (ICw)⊗H• (BT ) as a
graded H•(BT )-module.

Proof. See [GKM98, Theorem 14.1]. The proof uses the fact that the cohomology of BT ∼= (CP∞)dim T is pure. �

Lemma 4.3. Let Y be any T-space, and let F be a T-equivariant sheaf on Y such that the space H• (Y ;F ) is pure.
Then H•T (Y ;F ) is pure as well.

Proof. Recall that H•T (Y,F ) = H•
�

ET ×T X ,F
�

. The result follows from computing the Leray spectral sequence
for the fiber bundle ET ×T Y → BT , and by using that H• (BT ) and H• (Y,F ) are pure. �

We also record some equivariant analogues of results stated in Section 3. First note that the boundary maps in
the long exact sequences of T -equivariant cohomology for the distinguished triangles (3) and (4) vanish. The
proof is analogous to the non-equivariant case, using Lemma 4.3.

The following lemma is an analogue of Lemma 3.1.

Lemma 4.4. Let U = Xn\Xn−1. Let F and G be any T-equivariant complexes of sheaves on U. Then the cup-product
map

∪: H•T (u!F ) ⊗
H•(BT )

H•T (u∗G )→ H•T (u!F ⊗u∗G )

is an isomorphism. Since ∪ factors through the surjection

H•T (u!F ) ⊗
H•(BT )

H•T (u∗G )�H•T (u!F ) ⊗
HT (X )

H•T (u∗G ) ,

the induced cup-product
H•T (u!F ) ⊗

HT (X )
H•T (u∗G )→ H•T (u!F ⊗u∗G )

is also an isomorphism.

Proof. Consider the fiber bundle ET ×T Xn→ BT , with fiber Xn. The E2 pages of the Leray spectral sequences for
u!F and u∗G are as follows:

H p(BT, Hq(u!F )) =⇒ H p+q
T (u!F ),

H r(BT, H s(u∗G )) =⇒ H r+s
T (u∗G ).
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On the E2 page, the cup-product map can be written as the composition of the following two maps. The first map
is the cup-product with local coefficients, and the second is the fiber-wise cup-product on the local systems.

H p(BT, Hq(u!F )) ⊗
H•(BT )

H r(BT, H s(u∗G ))→ H p+r(BT, Hq(u!F )⊗H s(u∗G )),

H p+r(BT, Hq(u!F )⊗H s(u∗G ))→ H p+r(BT, Hq+s(u!F ⊗u∗G )).

Since the local systems Hq(u!F ) and H s(u∗G ) are constant on BT , the first map yields isomorphisms

H• (BT, Hq(u!F )) ⊗
H•(BT )

H• (BT, H s(u∗G ))
∼=−→H• (BT, Hq(u!F )⊗H s(u∗G )) .

Finally, we know from Lemma 3.1 that H• (u!F )⊗H• (u∗G )
∼=−→H• (u!F ⊗u∗G ) via the cup-product map. Alto-

gether, the cup-product maps on the E2 page yield an isomorphism

H•(BT, H•(u!F )) ⊗
H•(BT )

H•(BT, H•(u∗G ))
∼=−→ H•(BT, H•(u!F ⊗u∗G )).

The left hand side is a tensor product of two free H• (BT )-modules over H• (BT ). Hence it converges to
H•T (u!F ) ⊗

H•(BT )
H•T (u∗G ). The right hand side converges to H•T (u!F ⊗u∗G ). Since the E2 pages of the left hand

side and the right hand side are isomorphic via the cup-product map, the following cup-product map

H•T (u!F ) ⊗
H•(BT )

H•T (u∗G )→ H•T (u!F ⊗u∗G )

is an isomorphism. �

Let ecn ∈ HT (X ) be the equivariant Poincaré dual of [X−n ]T . Each ecn restricts to the class cn under the map
HT (X )→ H• (X ), hence the collection {ecn} generates HT (X ) over H• (BT ).

The following lemma (analogous to [Gin91, 3.8a]) describes the action of ecn on the equivariant cohomology of
the sheaves L j,n on X .

Lemma 4.5. For every j, the action of ecn on H•T
�

L j,n

�

fits into the following commutative diagram:

H•T
�

L j,n

�

H•T
�

u−1 L j,n

�

H•T
�

L j,n

�

H•T,c(u
−1 L j,n)

ecn ecn
∼=

Proof. Recall that the intersection of Xn and X−n lies away from Xn−1. Hence ecn restricts to zero on Xn−1, and cup-
product by ecn annihilates the cohomology of any sheaf supported on Xn−1. The kernel of H•T

�

L j,n

�

�H•T
�

u−1 L j,n

�

and the cokernel of H•T,c(u
−1 L j,n)→ H•T

�

L j,n

�

are both supported on Xn−1. So the map of multiplication by ecn from
H•T (Xn) to H•T (Xn) factors as follows.

H•T
�

L j,n

�

H•T
�

u−1 L j,n

�

H•T
�

L j,n

�

H•T,c(u
−1 L j,n)

ecn ecn

It remains to show that the vertical map on the right is an isomorphism. Since Xn and X−n intersect transversally
in the single point wn, the restriction of ecn to Xn is the image in H•T (Xn) of a generator of the local cohomology
group H•T (Xn, Xn\{wn}).

Since wn ∈ Un, we have H•T (Xn, Xn\{wn}) ∼= H•T (Un, Un\{wn}) by excision. But Un is an affine space that is
T -equivariantly contractible to wn, and hence H•T (Un, Un\{wn})∼= H•T,c(Un). This shows that multiplication by ecn

maps H•T (Un) isomorphically to H•T,c(Un).
Since u−1 L j,n is T -equivariant, the above argument applies to the cohomology of u−1 L j,n as well. This means

that ecn maps H•T
�

u−1 L j,n

�

isomorphically to H•T,c(u
−1 L j,n), and the proof is complete. �
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Once again, let Mm,n denote the sheaf L2,n ⊗ · · · ⊗ Lm,n. For brevity, we set up the following additional notation.

Am,n = H•T
�

L2,n

�

⊗
HT (X )

· · · ⊗
HT (X )

H•T
�

Lm,n

�

,

Bm,n = H•T
�

u∗u
−1 L2,n

�

⊗
HT (X )

· · · ⊗
HT (X )

H•T
�

u∗u
−1 Lm,n

�

.

The following two lemmas are analogues of Lemma 3.3 and Lemma 3.5 respectively.

Lemma 4.6. There is an exact sequence

H•T
�

u!u
−1 L1,n

�

⊗
HT (X )

Bm,n→ H•T
�

L1,n

�

⊗
HT (X )

Am,n→ H•T
�

v∗v
−1 L1,n

�

⊗
HT (X )

Am,n→ 0.

Proof. The proof is analogous to the proof of Lemma 3.3. We use the fact that H•T (X )
∼= H• (X )⊗ H• (BT ), and

use Lemma 4.5 as a substitute for [Gin91, 3.8a]. �

Lemma 4.7.

(i) The cohomology H•T
�

L1,n ⊗Mm,n

�

is pure.
(ii) There is a short exact sequence

0→ H•T,c

�

u−1(L1,n ⊗Mm,n)
�

→ H•T
�

L1,n ⊗Mm,n

�

→ H•T
�

L1,n−1 ⊗Mm,n−1

�

→ 0.

Proof. The proofs are analogous to the proofs of their counterparts from Section 3, using the observation of
Lemma 4.3 and the fact that H• (BT ) is pure. �

We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. We obtain the following commutative diagram from the exact sequences of Lemma 4.6 and
Lemma 4.7.

(8)

H•T
�

u!u
−1 L1,n

�

⊗
HT (X )

Bm,n H•T
�

L1,n

�

⊗
HT (X )

Am,n H•T
�

v∗v
−1 L1,n

�

⊗
HT (X )

Am,n 0

0 H•T
�

u!u
−1 L1,n ⊗Mm,n

�

H•T
�

L1,n ⊗Mm,n

�

H•T
�

v∗v
−1 L1,n ⊗Mm,n

�

0

a b c

First observe that the action of HT (X ) on H•T
�

u!u
−1 L1,n

�

and on Bm,n factors through the map HT (X )→ H•T (U)
∼=

H• (BT ), so

H•T
�

u!u
−1 L1,n

�

⊗
HT (X )

Bm,n
∼= H•T

�

u!u
−1 L1,n

�

⊗
H•(BT )

Bm,n.

We prove by induction on m that the map a is an isomorphism. As in the proof of Lemma 3.2, the case of m = 2 is
proved by Lemma 4.4, and the general case is proved by iterating the argument. An argument similar to the proof
of Lemma 3.4 proves that the map c is an isomorphism.

Hence by the snake lemma, the middle map b is an isomorphism as well. Consequently, we obtain the following
isomorphisms for every n:

H•T
�

L1,n

�

⊗
HT (X )

· · · ⊗
HT (X )

H•T
�

Lm,n

�

→ H•T
�

L1,n ⊗ · · · ⊗ Lm,n

�

.

In particular when Xn = X , we see that the cup-product map

H•T
�

ICp1

�

⊗
HT (X )

· · · ⊗
HT (X )

H•T
�

ICpm

�

→ H•T
�

ICp1
⊗· · · ⊗ ICpm

�

is an isomorphism. �
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