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ABSTRACT. The Bernstein–Sato polynomial, or the b-function, is an important invariant
of hypersurface singularities. The local topological zeta function is also an invariant of
hypersurface singularities that has a combinatorial description in terms of a resolution
of singularities. The Strong Topological Monodromy Conjecture of Denef and Loeser
states that poles of the local topological zeta function are also roots of the b-function.

We use a result of Opdam to produce a lower bound for the b-function of hyperplane
arrangements of Weyl type. This bound proves the “n/d conjecture”, by Budur, Mus-
ta̧tă, and Teitler for this class of arrangements, which implies the Strong Monodromy
Conjecture for this class of arrangements.

1. INTRODUCTION

The goal of this short paper is to prove the Strong Topological Monodromy Conjecture
for hyperplane arrangements of Weyl type, i.e., Coxeter arrangements arising from a
finite Weyl group. This conjecture links two invariants of hypersurface singularities: the
local topological zeta function, and the Bernstein–Sato polynomial (or b-function).

The Bernstein–Sato polynomial, also called the b-function, is a relatively fine invariant
of singularities of hypersurfaces. Let f be a polynomial function on an affine space X ,
and let DX be the ring of differential operators on X . Then the b-function of f can be
defined as the minimal polynomial b f (s) for the operator of multiplication by s on the
holonomic DX [s]-module DX [s] f s/DX [s] f s+1 [Kas77].

The local topological zeta function associated to a hypersurface V ( f ) is a function
Ztop, f (s) on C. Defined by Denef and Loeser [DL92], it is computed in terms of the
Euler-Poincaré characteristic of the irreducible components of an embedded resolution
of singularities of the hypersurface V ( f ). Thus it forms a topological analog to the more
analytic local Igusa zeta function [Igu00].

In the case of f a relative invariant on a prehomogenous vector space, poles of the
Igusa zeta function correspond to roots of the b-function [Igu00]. Consequently, by
work of Malgrange [Mal75, Mal83] and Kashiwara [Kas77], the poles also give the
eigenvalues of the monodromy operator on the cohomology of the Milnor fiber. The
Topological Monodromy Conjecture of Denef and Loeser [DL92] is an analog of this
work for topological zeta functions. The weak form states that poles of Ztop, f give
eigenvalues of the monodromy operator. The strong form states that poles of Ztop, f give
roots of b f , which, by Malgrange and Kashiwara, implies the weak version.

We will consider the case of f a hyperplane arrangement. This case has proved
particularly tractable for computation, especially to compute and relate singularity
invariants such as b-functions, zeta functions, Milnor monodromy , and jumping co-
efficients [Sai06, Sai07, Wal05, BMT11, BS10, Bud12]. In particular, Budur, Musta̧tă,
and Teitler have proved the weak version of the Topological Monodromy Conjecture for
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hyperplane arrangements [BMT11, Theorem 1.3(a)]. We will prove the strong version
for a particular class of arrangements.

Theorem 1.1. Let h be a Cartan subalgebra of a simple complex Lie algebra g. Let ξ ∈ C[h]
be the product of the positive roots. If c is a pole of Ztop,ξ(s), then bξ(c) = 0.
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2. HYPERPLANE ARRANGEMENTS OF WEYL TYPE

Let G be a complex connected reductive Lie group with Lie algebra g. Let h ⊂ g be
a Cartan subalgebra, and let R ⊂ h∗ be the associated root system with Weyl group W .
Define ξ to be the product of the positive roots:

ξ=
∏

α∈R+
α.

The zero locus V (ξ) is a union of hyperplanes. This is the hyperplane arrangement we
wish to study.

The function ξ is anti-symmetric with respect to the W -action on h, and is the
Jacobian determinant of the quotient map h→ h/W . The set V (ξ) consists of points
fixed by at least one non-trivial element of W . Thus V (ξ) is the complement of hreg. The
W -invariant function ξ2 is called the discriminant of the root system R. Let ∆ denote

the pullback of ξ2 under the Chevalley isomorphism C[g]G
∼=−→ C[h]W .

When the root system R is of type An−1, this polynomial is recognized as the Vander-
monde determinant:

ξn =
∏

1≤i< j≤n

(x i − x j).

In this case, ∆ sends a matrix in g to the discriminant of its characteristic polynomial.
Since ξ2 is in C[h]W , we can consider its image in C[h/W ]. Specifically, by the

Chevalley-Shephard-Todd theorem, h/W is an n-dimensional affine space, where n=
rk(G) = dim(h). Hence C[h/W ] is a polynomial ring in n variables. Fix a homogeneous
free set of generators for this polynomial ring, so that C[h/W ] = C[e1, . . . , en]. We write
C[h/W ] to mean polynomials in the generators {e1, . . . , en}, and C[h]W to mean poly-
nomials in the generators {x1, . . . , xn} of C[h]. Let g be the polynomial corresponding
to ξ2 in C[h/W ], that is, g(e1, . . . , en) = ξ2(x1, . . . , xn).

In [Opd89], Eric Opdam found the b-function for g. We show in the next section that
bg(s) divides bξ2(s), but evidence suggests that it falls far short of equality. Moreover,
for a general f , it is always true that b f 2(s) | b f (2s + 1)b f (2s), but equality does not
always hold.

3. PROOFS

In [BMT11, Theorem 1.3(b)], Budur, Musta̧tă, and Teitler reduce the Strong Mon-
odromy Conjecture to the so-called n/d conjecture [BMT11, Conjecture 1.2]. We prove
Theorem 3.3, which is the n/d conjecture in the case of Weyl arrangements. As a
corollary, we deduce Theorem 1.1, which is the Strong Monodromy Conjecture in this
case.

We begin by proving the following relationship between the b-functions of g and ξ.
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Theorem 3.1. The function bg(s) divides the function bξ(2s+ 1).

Proof. The inclusion map h ,→ g induces a restriction map ρ : C[g]G → C[h]W , which
is an isomorphism by the Chevalley restriction theorem. Let ∆= ρ∗(ξ2), which is an
element of C[g]G .

Let Lξ2(s) ∈ D(h)[s] be an operator that satisfies Lξ2(s)(ξ2(s+1)) = bξ2(s) · (ξ2)s. Since
ξ2 is W -invariant, we may assume (by averaging) that Lξ2(s) ∈ D(h)W [s].

The space D(h)W of W -invariant operators acts on C[h/W ], by pulling back via the
isomorphism C[h/W ]∼= C[h]W . For any L ∈ D(h)W , let ϕ(L) be the corresponding dif-
ferential operator in D(h/W ). Clearly, ϕ extends to a map ϕ : D(h)W [s]→ D(h/W )[s].
Applying ϕ to Lξ2(s), we see that ϕ(Lξ2(s))(gs+1) = bξ2(s) · gs.

This equation shows that the b-function of g divides bξ2(s), that is,

(1) bg(s) | bξ2(s).

Similarly, we have a map D(g)G[s] → D(g//G)[s]. Let L∆(s) be an operator that
satisfies L∆(s)(∆s+1) = b∆(s) ·∆s. Since the action of G on D(g)[s] is locally finite, we
may assume by averaging that L∆(s) ∈ D(g)G[s]. By a similar argument as above for
the quotient g→ g//G instead of h→ h/W , we see that

(2) bg(s) | b∆(s).

Let Lξ(s) ∈ D(h) such that Lξ(s)(ξs+1) = bξ(s) · ξs. Observe that

Lξ(2s)Lξ(2s+ 1)(ξ2(s+1)) = bξ(2s)bξ(2s+ 1) · (ξ2)s.

Therefore the b-function of ξ2 divides bξ(2s)bξ(2s+ 1), that is,

(3) bξ2(s) | bξ(2s)bξ(2s+ 1).

From (1) and (3), we see that

(4) bg(s) | bξ(2s)bξ(2s+ 1).

We use the following theorem. The existence is due to Harish-Chandra [HC64], and
the surjectivity is due to Wallach [Wal93], and Levasseur–Stafford [LS95].

Proposition 3.2. Conjugating the radial part map Rad by ξ yields a surjective homomor-
phism of algebras HC: D(g)G → D(h)W , called the Harish-Chandra homomorphism.

Clearly, HC extends to a map HC: D(g)G[s] → D(h)W [s]. Recall that L∆(s) is in
D(g)G[s], and was chosen such that L∆(s)(∆s+1) = b∆(s) ·∆s. Since ∆ corresponds to
the function ξ2 under the Chevalley restriction map, we have

HC(L∆(s− 1/2)) · (ξ2)s+1 = ξ ◦Rad(L∆(s− 1/2)) ◦ ξ−1(ξ2)s+1

= ξ ◦Rad(L∆(s− 1/2))(ξ2)(2s+1)/2

= ξ · b∆(s− 1/2) · (ξ2)(2s−1)/2

= b∆(s− 1/2) · ξ2s,

which shows that bξ2(s) | b∆(s− 1/2).
Since HC is surjective, Lξ2(s) ∈ D(h)W can be lifted to an operator in D(g)G . By

running the previous argument in reverse, we can see that b∆(s − 1/2) | bξ2(s). We
conclude that bξ2(s) = b∆(s− 1/2), and by changing variables that

(5) bξ2(s+ 1/2) = b∆(s).
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From (2), (3), and (5), we see that

(6) bg(s) | bξ(2s+ 1)bξ(2s+ 2).

Suppose that bg(s) - bξ(2s+1). This means that there is some c that is a root of bg(s)
of some multiplicity m, but is a root of bξ(2s+ 1) of multiplicity k < m (where k may
be zero). By (4), c must be a root of bξ(2s), and by (6), c must be a root of bξ(2s+ 2).

By [Sai06, Theorem 1], the difference between any two roots of the b-function of
ξ, a hyperplane arrangement, is less than 2. So c cannot be a root of both bξ(2s) and
bξ(2s+2), and we have a contradiction. This argument proves that bg(s) | bξ(2s+1).

The proof of the n/d conjecture for Weyl arrangements now follows quite easily,
which also proves Theorem 1.1.

Theorem 3.3. Let h be a Cartan subalgebra of a simple complex Lie algebra g. Let ξ ∈ C[h]
be the product of the positive roots as defined earlier. Let d = deg(ξ) and let n= dim(h).
Then −n/d is always a root of the b-function of ξ.

Proof. Let d1 ≤ · · · ≤ dn be a list of the degrees of the fundamental invariants of the
Lie group G. The degree of the highest fundamental invariant is equal to the Coxeter
number. Recall that n is the rank of the root system, and the total number of roots
equals 2d. It is known (see, e.g., [Hum90, Section 3.18]) that dn · n= 2d.

From [Opd89], we know that

bg(s) =
n
∏

i=1

di−1
∏

j=1

�

s+
1
2
+

j
di

�

.

Notice that one of the factors above is
�

s+
1
2
+

1
dn

�

=
�

s+
1
2
+

n
2d

�

.

So −(1/2+ n/(2d)) is a root of bg(s) and hence of bξ(2s+ 1), which precisely means
that bξ(−n/d) = 0.
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