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We describe a family of compactifications of the space of Bridgeland stability conditions
of a triangulated category, following earlier work by Bapat, Deopurkar, and Licata.
We particularly consider the case of the 2-Calabi–Yau category of the A2 quiver. The
compactification is the closure of an embedding (depending on q) of the stability space
into an infinite-dimensional projective space.

In the A2 case, the three-strand braid group B3 acts on this closure. We describe two
distinguished braid group orbits in the boundary, points of which can be identified with
certain rational functions in q. Points in one of the orbits are exactly the q-deformed
rational numbers recently introduced by Morier-Genoud and Ovsienko, while the other
orbit gives a new q-deformation of the rational numbers. Specialising q to a positive real
number, we obtain a complete description of the boundary of the compactification.

1. Introduction

1.1. Deformed rational numbers. The theory of q-deformations of rational numbers
has an extremely recent history. Deformed rational numbers were originally introduced
in [MGO20] and developed in [MGO19]. The definition considered in these papers is
via deformations of continued fraction expansions of rational numbers. The resulting
q-rationals enjoy several pleasant properties, and the authors discuss connections to a
wide variety of classical topics including the Farey triangulation, cluster algebras, and the
Jones polynomial.

In this paper we present an enhancement of the notion of q-deformed rationals, from
which the q-rationals of [MGO20] can be easily read off. For any fixed positive q and a
rational number r/s, we describe a pair of real numbers, denoted [r/s]♭ and [r/s]♯. The
number [r/s]♯ is precisely the q-deformation of r/s considered in [MGO20]. We argue
that [r/s]♭ can also reasonably be thought of as a q-deformation of r/s.

For example, the number [1/0]♯, which is the q-deformation of ∞ in [MGO20], is just
∞ itself. On the other hand, [1/0]♭ = 1/(1 − q).

For other rationals r/s, the two q-deformations can both be described via the action of a
group PSL2,q(Z) ⊂ PSL2(R), which acts on R ∪ {∞} by fractional linear transformations.
The action of this group on the numbers [r/s]♯ has been further explored in [LMG21].

We define the groups PSL2,q(Z) and give the construction of the two q-deformations in
parallel in Section 2.

1.2. A compactification of the space of stability conditions. The motivation for
our two constructions of q-deformed rational numbers comes from homological algebra.
To explain this, in Section 4, we associate to each positive real q a compactification of
the space of Bridgeland stability conditions on C2, the 2-Calabi–Yau (2-CY) triangulated
category for the A2 quiver. This compactification is a generalisation of a construction
of [BDL20], which corresponds to the case q = 1, and proceeds by embedding the space of
stability conditions into an infinite dimensional projective space, and taking the closure
there. We set Mq to be the image of the space of stability conditions under this embedding,
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Mq to be its closure, and ∂Mq to be Mq\Mq. In the construction, the ambient projective
space is independent of q, but the embedding itself depends on q.

When q = 1, the spaces involved can be identified with basic objects of hyperbolic
geometry: the space of stability conditions Stab(C2)/C can be identified with the upper
half plane H2 (homeomorphic to the open disk), and the compactification is then the
closed disk H2 ∪ R ∪ {∞}. The points of the boundary don’t correspond to stability
conditions, but they can be regarded as translation-invariant metrics on the category C2.
Moreover, there is a canonical bijection between the spherical objects of C2 up to shift
and the rationals Q ∪ {∞} ⊂ R ∪ {∞}. It is a theorem of Rouquier–Zimmermann [RZ03]
that this bijection intertwines the braid group action on the spherical objects with the
PSL2(Z) action on Q ∪ {∞}. Details about this construction may be found in [BDL20]
and references therein.

One of the main goals of this paper is to establish analogues of this result for the case
q ̸= 1. When we vary q, the space Mq remains an open disk, but something interesting
happens at the boundary: each spherical object in the category corresponds not to a
rational point, but rather to an entire interval in ∂M q. We elaborate on this statement
in Section 3.4, by associating two projectivised linear functionals to each spherical object
X. These functionals, called homq(X, · ) and occq(X, · ), each map the set of spherical
objects to R. The former sends Y to the Laurent polynomial whose qk-coefficient is the
number of degree-k morphisms from X to Y . The definition of occq(X, · ) is a little more
involved, but is also intrinsically well-motivated. At q = 1, these two functionals agree
and lie on the boundary, coinciding with the rational point in R ∪ {∞} corresponding to
the spherical object X. When q ̸= 1, they are distinct functionals, and the entire closed
interval of convex combinations of the two functionals lies on the boundary. We call this
interval Iq,X . We summarise these statements in the following theorem.

Theorem 1.1.
(1) For all q ∈ (0,∞), the space of stability conditions maps homeomorphically onto

Mq, which is in turn homeomorphic to an open disk.
(2) The boundary of Mq is ∂M q, and is homeomorphic to R ∪ {∞}.
(3) The union of the intervals Iq,X , as X ranges over the spherical objects of C2, is a

dense subset of the boundary ∂M q.

Further, we conjecture that M q is homeomorphic to a closed disk. We prove this
theorem in Section 4. The main tool used in the proof is a finite state automaton known
as a Harder–Narasimhan automaton or HN automaton, introduced in [BDL20]. This
automaton controls how the HN filtration of an object in the A2 category transforms
when acted on by a braid. (This automaton is also of use when q = 1, where is allows for
a simpler proof of Rouquier–Zimmermann’s original result.)

We expect the role of HN automata in the study of triangulated autoequivalence groups
will be somewhat analogous to the role of Thurston’s train track automata in the study of
mapping class groups. For 2-CY catgories, such automata have been constructed in type
A2 and type Â1 in [BDL20], and in the PhD thesis of Edmund Heng in all other rank 2
Coxeter types. Constructing HN automata in higher rank examples and exploiting them
to study stability conditions and autoequivalence groups is an important open problem.
We give the definition of HN automata in Appendix B.

1.3. Relationship to the q-rational numbers. Recall that at q = 1, the correspondence
of spherical objects to rational numbers intertwines the braid group action on the spherical
objects with the PSL2(Z) action on R ∪ {∞}. The bulk of Section 3 is devoted to the
q-analogue of this correspondence, where the group PSL2(Z) is replaced by the group
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PSL2,q(Z). We prove the following result (see Theorems 3.7 and 3.8 for the precise
statements).

Theorem 1.2. Consider assignments

X 7→ (−q)−ϵoccq(P2, X)
occq(P1, X) and X 7→ q−1(−q)ϵhomq(X,P2)

homq(X,P1)
,

where ϵ is either 0 or 1 depending on X. Each of these assignments intertwines the B3
action on the spherical objects of C2 with the PSL2,q(Z) action on R ∪ {∞}.

In fact, the first of the two assignments above recovers the q-rational numbers of
[MGO20, MGO19].

Theorem 1.3. Let X be a spherical object of C2 corresponding to the rational number
r/s. The ratio

(−q)−ϵoccq(P2, X)
occq(P1, X)

is the q-deformation [r/s]♯q in the sense of Morier-Genoud–Ovsienko [MGO20, MGO19].

This result suggests that the corresponding ratio of homq functionals

q−1(−q)ϵhomq(X,P2)
homq(X,P1)

should be thought of as another q-deformation of the corresponding rational number; it
is in fact the alternative q-deformation [r/s]♭q mentioned above. In Section 2 we give an
elementary parallel account of both of these q-deformations, and Theorems 3.7 and 3.8
give precise relationships between the q-deformations and homological algebra.

1.4. The Jones polynomial of rational knots. In [MGO20, Appendix A], Morier-
Genoud and Ovsienko relate the q-deformed rational numbers to the Jones polynomial of
rational (two-bridge) knots. In particular, they prove that the normalised Jones polynomial
is equal to qR(q) + (1 − q)S(q), where [r/s]♯q = R(q)/S(q). In our Appendix A, we prove
an analogous result involving our new q-deformed rational number [r/s]♭q: the numerator
of [r/s]♭q is equal to the Jones polynomial of the corresponding rational knot (up to the
signs of the coefficients).

2. q-deformed rational numbers

In this section we present two different q-deformations of the set Q∪ {∞}, one of which
is exactly the q-deformed rational numbers of [MGO20]. We begin by defining the two
q-deformations via continued fraction expansions. Although the definitions may appear
unmotivated at first, the remainder of the section provides several viewpoints towards
the two deformations that also serve as motivation. Throughout this paper, a rational
number is considered to be any element of Q∪ {∞}. Also throughout this paper, we treat
the case 0 < q ≤ 1. The case 1 ≤ q < ∞ is symmetric, and, up to sign, all of our results
are preserved under this symmetry.
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2.1. Left and right q-deformed rational numbers. Recall that every non-zero rational
number r/s has a unique even continued fraction expression [a1, ..., a2n], where

r

s
= a1 +

1

a2 +
1

a3 +
1
. . .

a2n−1 +
1
a2n

,

and either a1 ∈ N and a2, .., a2n ∈ N \ {0}, or −a1 ∈ N and −a2, ...,−a2n ∈ N \ {0}. The
continued fraction expansion of 0 is [−1, 1]. The continued fraction expansion of ∞ is the
empty expansion [ ].

Remark 2.1. The convention for continued fractions that we have chosen here is slightly
nonstandard. However, we have the following pleasing dichotomy under this convention:

(1) strictly positive rational numbers only contain non-negative numbers in their
continued fraction expansions;

(2) strictly negative rational numbers only contain non-positive numbers in their
continued fraction expansions.

The points 0 and ∞ are both negative and positive, and thus exceptional. The choice
of which corresponds to the empty expansion is equivalent to the choice between odd
and even continued fraction expansions. The odd continued fraction expansion of 0 is
[ ], and that of ∞ is [0, 1,−1]. For even continued fractions, ∞ is the ‘basepoint’ in
Proposition 2.2; for odd continued fractions, it is 0.

The continued fraction expansion is related to the action on Q ∪ {∞} by the modular
group PSL2(Z). Recall that PSL2(R) is the quotient of the group of 2 × 2 real invertible
matrices by scalar matrices. The group PSL2(Z) is the subgroup of PSL2(R) generated by

σ1 :=
[
1 −1
0 1

]
, σ2 :=

[
1 0
1 1

]
.

The group PSL2(R) acts on each of the sets
R ∪ {∞} ⊂ C ∪ {∞}

by fractional linear transformations:

(1)
[
a b
c d

]
· z = az + b

cz + d
.

The modular group PSL2(Z) also preserves, and is transitive on, Q ∪ {∞}. The following
is easy to check.

Proposition 2.2. Let r/s be a rational number. Suppose that r/s has an even continued
fraction expansion [a1, . . . , a2n]. Then

r

s
= σ−a1

1 σa2
2 σ

−a3
1 · · ·σ−a2n−1

1 σa2n
2 (∞),

under the usual action of PSL2(Z) on Q ∪ {∞}.

In order to obtain q-deformations of the rationals, we first define a family of discrete
subgroups of PSL2(R) indexed by q, which deform the modular group PSL2(Z). This
q-deformation of the modular group, and its relation to the q-rationals, was first studied
in [LMG21].
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Definition 2.3. [LMG21, §3.2] Set PSL2,q(Z) to be the subgroup of PSL2(R) generated
by

σ1,q :=
[
q−1 −q−1

0 1

]
, σ2,q :=

[
1 0
1 q−1

]
.

At q = 1, the group PSL2,q(Z) is simply PSL2(Z). Recall the three-strand Artin braid
group:

B3 := ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩.
The following is easy to check.
Proposition 2.4. The assignment

σ1 7→ σ1,q, σ2 7→ σ2,q

gives a homomorphism from B3 to PSL2,q(Z).
Our definitions of the q-deformed rational numbers are motivated by Proposition 2.2,

and use the homomorphism from B3 → PSL2,q(Z) described above. We first set up the
following notation.
Definition 2.5. Given an even continued fraction expansion

a = [a1, . . . , a2n]
as above, define the braid corresponding to a as the following element of B3:

βa = σ−a1
1 σa2

2 σ
−a3
1 · · · σ−a2n−1

1 σa2n
2 .

For any q ∈ R, denote by βa,q the image of βa in PSL2,q(Z).
Now we are in a position to define the q-deformed rational numbers (the second part is

equivalent to [LMG21, Proposition 3.2]).
Definition 2.6 (Left and right q-deformed rationals). Let r/s ∈ Q∪ {∞} with continued
fraction expansion a.

(1) The left q-deformed rational number corresponding to r/s is[
r

s

]♭
q

= βa,q

(
1

1 − q

)
.

(2) The right q-deformed rational number corresponding to r/s is[
r

s

]♯
q

= βa,q (∞) .

At q = 1, the left and right deformed rationals coincide, and by Proposition 2.2, are
both equal to r/s.
Definition 2.7. Following [MGO20], we fix the following notation for the rational
functions associated to the left and right q-deformed rational numbers:[

r

s

]♭
q

= R♭(q)
S♭(q) ,

[
r

s

]♯
q

= R♯(q)
S♯(q) ,

where the polynomials in the numerator and denominator are normalised so that if r/s > 0
(resp. r/s < 0), the denominator has lowest (resp. highest) degree term equal to 1. If
r/s = 0, we set

R♭(q) = 1 − q−1, S♭(q) = 1, R♯(q) = 0, S♯(q) = 1.
If r/s = ∞, we set

R♭(q) = 1, S♭(q) = 1 − q, R♯(q) = 1, S♯(q) = 0.
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Remark 2.8. Note that R♭(q), S♭(q), R♯(q), and S♯(q) depend on both r and s.

Example 2.9. Here are some simple examples of q-deformed rational numbers (cf.
[MGO20, Example 1.2]).[1

2

]♭
q

= q2

1 + q2 ,
[1
2

]♯
q

= q

1 + q
,

[3
2

]♭
q

= 1 + q2 + q3

1 + q2 ,
[3
2

]♯
q

= 1 + q + q2

1 + q
,

[5
2

]♭
q

= 1 + q + q2 + q3 + q4

1 + q2 ,
[5
2

]♯
q

= 1 + 2q + q2 + q3

1 + q
,

[5
3

]♭
q

= 1 + q + q2 + q3 + q4

1 + q + q3 ,
[5
3

]♯
q

= 1 + q + 2q2 + q3

1 + q + q2 ,

[8
3

]♭
q

= 1 + 2q + q2 + 2q3 + q4 + q5

1 + q + q3 ,
[8
3

]♯
q

= 1 + 2q + 2q2 + 2q3 + q4

1 + q + q2 .

By the results of [MGO20, §2.6], it is clear that our right q-deformed rational numbers are
the same as the q-rational numbers considered in [MGO20]. And by [LMG21, Theorem 4],
this definition does not depend on the particular choice of continued fraction representation.
In the next section we motivate our definition of left q-deformed rational numbers.

2.2. Motivation via the q-Farey tessellation. In this section we recall a q-deformation
of the classical Farey tessellation of the hyperbolic plane, originally considered in [MGO20].
We first recall the classical Farey tessellation. The hyperbolic plane has an upper half-plane
model:

H := {z ∈ C | ℑ(z) > 0},
which embeds naturally into C ∪ {∞}. The group PSL2(R), which acts on C ∪ {∞} by
fractional linear transformations, preserves the hyperbolic plane H, and acts on it by
hyperbolic isometries.

The hyperbolic plane admits a tessellation by ideal triangles according to the following
iterative construction. We begin with an ‘initial geodesic’ E, namely the straight vertical
line from 0 to ∞. Starting with E, we complete every geodesic in the tessellation to
a triangle according to the following rule, called the Farey rule. By induction, every
geodesic in the tessellation has rational vertices r/s and r′/s′ (the integers r, s, r′, s′ are
uniquely determined by construction). We add a geodesic from r/s to (r+ r′)/(s+ s′) and
a geodesic from (r + r′)/(s+ s′) to r′/s′ (see Fig. 1). The ‘positive half’ of the hyperbolic

r

s
r + r′

s+ s′
r′

s′

Figure 1. A standard Farey triangle.

plane, those z ∈ H such that 0 ≤ ℜ(z) < ∞, is covered by applying the rule to the initial
geodesic E with its vertices viewed as the fractions 0/1 and 1/0. The ‘negative half’ is
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obtained by applying the rule to E with its vertices viewed as the fractions 0/1 and −1/0.
We call the resulting tessellation the Farey tessellation of the hyperbolic plane. The set
of vertices of the Farey tessellation is exactly Q ∪ {∞}. Moreover, the Farey tessellation
is preserved by the PSL2(Z)-action described above (that is, the PSL2(Z)-action sends
triangles to triangles), and the PSL2(Z)-orbit of any Farey triangle is the entire hyperbolic
plane.

Morier-Genoud and Ovsienko introduced a q-deformed Farey rule, which generates a
tessellation of a subset of H. As with the regular Farey rule, we begin with a geodesic E
between 0 and ∞, but it is now assigned a label q−1. We then extend every geodesic in
the tessellation, with vertices R(q)/S(q) and R′(q)/S ′(q) (the vertices are now rational
functions evaluated at q), to a triangle according to Fig. 2 (see [MGO20, Definition 2.9]).
For the positive half, view E as being the top edge in Fig. 2 connecting the fractions 0/1

R(q)
S(q)

R(q) + qkR′(q)
S(q) + qkS ′(q)

qk−1

1

qk

R′(q)
S ′(q)

Figure 2. A q-deformed Farey triangle.

and 1/0, and for the negative half, as connecting the fractions 0/q and −1/0. The bottom
left edge of any triangle is always labelled 1, and we thus iteratively deduce labels for all
other edges. The set of vertices of the q-deformed Farey tessellations is exactly the set
of right q-deformed rational numbers [r/s]♯q. Fig. 3 depicts what the q-deformed Farey
tessellations look like at two different values of q.

(a) q = 0.3 (b) q = 0.7

Figure 3. The deformed Farey tessellations at two values of q.

The action of PSL2,q(Z) on H preserves q-deformed Farey triangles (since PSL2,q(Z)
is a subgroup of PSL2(R), which preserves geodesics). Moreover, PSL2,q(Z) acts on the
q-deformed Farey tessellation exactly as PSL2(Z) acts on the classical Farey tessellation.
More formally, let T denote the set of triangles in the Farey tessellation, and let Tq denote
the set of q-deformed triangles. Since the PSL2(Z)-action preserves Farey triangles, there
is an induced PSL2(Z)-action on T, and similarly there is an induced PSL2,q(Z)-action on
Tq. Let ψ : PSL2,q(Z) → PSL2(Z) be the group homomorphism given by setting q = 1,
and let ϕ : Tq → T be induced from the map R(q)/S(q) 7→ R(1)/S(1) on the vertices.
Then for any β ∈ PSL2,q(Z), we have the following commutative square, as can be proven
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by comparing the actions on the vertices of the respective tessellations.

Tq T

Tq T

β

ϕ

ψ(β)

ϕ

We can now describe how left q-rationals arise in the q-deformed Farey tessellation.
Consider any rational r/s. In the standard Farey tessellation, r/s is the middle vertex of
a unique triangle, and the left (resp. right) vertex of an infinite sequence of triangles. In
the notation of Fig. 4, r/s is the right vertex of T0, T1, ..., and the left vertex of T ′

0, T
′
1, ... .

T1 T ′
1

T2 T ′
2

T3 T ′
3

r

s

Figure 4. A fraction in the standard Farey tessellation.

Assume for convenience that 0 < r/s < ∞, and let TA denote the triangle with vertices
0, 1,∞. If the continued fraction expansion of r/s is a, then

T0 = βaTA, Tn = (βaσ
−1
1 β−1

a )nT0.

Similarly, letting β ′
a = βaσ

−1
2 σ−1

1 , we have
T

′

0 = β
′

aTA, T
′

n = (β ′

aσ2(β
′

a)−1)nT0.

As suggested by Fig. 4, for any point x ∈ T0,

lim
n→∞

(βaσ
−1
1 β−1

a )nx = r

s
,

and for any point x′ ∈ T
′
0,

lim
n→∞

(β ′

aσ2(β
′

a)−1)nx′ = r

s
.

So we can view the rational point r/s in the boundary as the limit of the sequences of
Farey triangles (Tn)n∈N, (T

′
n)n∈N.

When we q-deform the Farey tessellation, we obtain corresponding sequences of trian-
gles (Tq,n)n∈N, (T

′
q,n)n∈N. As we will partially prove in Section 2.4, based on arguments

from [MGO19], the triangles T ′
q,n once again limit to a point, but the triangles Tq,n limit

to a geodesic, with endpoints on the boundary (see Fig. 5). We call this geodesic the
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T1

T2

T3

T ′
1

T ′
2

T ′
3

[
r
s

]♯

q

[
r
s

]♭

q

T1

T2

T3

T ′
1

T ′
2

T ′
3

[
r
s

]♯

q

[
r
s

]♭

q

Figure 5. The sequence of triangles Tn converging to the q-deformed
rational curve of r/s, shown as a dotted line.

q-deformed rational curve corresponding to r/s. The left q-rational corresponding to r/s
is the left endpoint of a q-deformed rational curve, and the right q-rational corresponding
to r/s is the right endpoint of the same curve. We denote by Qq the union of all of the
q-deformed rational curves, together with their endpoints. This motivates our definition
of left and right q-rationals. Namely, if Tn n→∞−−−→ r/s, then the corresponding q-deformed
sequence of triangles Tn,q limits to the geodesic with endpoints [r/s]♭q and [r/s]♯q.

2.3. Alternate descriptions of the deformed rational numbers. The left and right
q-deformed rational numbers admit several elegant intrinsic definitions. Recall the classical
q-deformation of the integers, which we call the right q-deformation:

[n]♯q := 1 − qn

1 − q
= 1 + q + · · · + qn−1.

We introduce a corresponding left q-deformation of n:

[n]♭q := 1 − qn−1 + qn − qn+1

1 − q
= 1 + q + · · · + qn−2 + qn.

The following proposition gives equivalent definitions of the two q-deformations of the
rational numbers, and is easy to check. In fact, this is how the (right) q-deformed rational
numbers were originally defined (see [MGO20, Definition 1.1]).

Proposition 2.10. Let r/s be a finite rational number with even continued fraction
expansion [a1, ..., a2n].
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(1) The corresponding right q-deformed rational has the following formula.[
r

s

]♯
q

= [a1]♯q +
qa1

[a2]♯q−1 +
q−a2

[a3]♯q +
qa3

[a4]♯q−1 +
q−a4

. . .

[a2n−1]♯q +
qa2n−1

[a2n]♯q−1

(2) The corresponding left q-deformed rational has the following formula.[r
s

]♭
q

= [a1]♯q +
qa1

[a2]♯q−1 +
q−a2

. . .

[a2n−1]♯q +
qa2n−1

[a2n]♭q−1

The continued fraction expansion of every q-deformed rational number induces an
element of PSL2,q(Z) analogous to that in Proposition 2.2. Right-multiplying this element
by ∞ (for right q-rationals) or 1/(1−q) (for left q-rationals) returns the original q-rational.
The following proposition expresses this element of PSL2,q(Z) in terms of the numerators
and denominators of the corresponding q-rationals. The second part of this proposition
appears as [MGO20, Proposition 4.3].

Proposition 2.11 (Matrix formula for q-rationals). Consider any rational number r/s
with continued fraction expansion a = [a1, ..., a2n]. Let r′/s′ be the rational number with
continued fraction expansion [a1, ..., a2n−1].

(1) We have the following for left q-rationals.

qa2+a4+...+a2n−2βa,q

[
1 1 − q−1

1 − q 1

]
=



q−a2nR♭(q) R♭′(q)
q−a2nS♭(q) S♭′(q)

 , 0 ≤ r

s
< ∞,

q−a2n+1R♭(q) R♭′(q)
q−a2n+1S♭(q) S♭′(q)

 , r

s
< 0 or r

s
= ∞.

(2) We have the following for right q-rationals.

qa2+a4+...+a2nβa,q =



qR♯(q) R♯′(q)
qS♯(q) S♯′(q)

 , 0 ≤ r

s
< ∞,

R♯(q) R♯′(q)
S♯(q) S♯′(q)

 , r

s
< 0 or r

s
= ∞.

2.4. Limits of q-deformed rational numbers. The following theorem partially for-
malises the description of q-deformed rational numbers depicted in Fig. 4 and Fig. 5.
The vertices of the q-Farey tessellation are the right q-deformed rationals, while the left
q-deformed rational numbers arise as limits of sequences of right q-deformed rationals.
The same phenomenon is described in [MGO19], in terms of Taylor series; see especially
Theorem 1 and Remark 3.2. The proof owes its technique to the proofs in that paper.
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Theorem 2.12 (Limits of q-rationals). Suppose q < 1. Consider any convergent sequence
of rational numbers (rm/sm)m∈N ∈ QN.

(1) If (rm/sm)m∈N converges to an irrational number t ∈ R \ Q, then the sequence
of right q-deformed rational numbers ([rm/sm]♯q)m∈N ∈ RN converges to a limit,
uniquely determined by t.

(2) If (rm/sm)m∈N converges to a rational number r/s from the right, then the sequence
of right q-deformed rational numbers ([rm/sm]♯q)m∈N ∈ RN converges to [r/s]♯q.

(3) If (rm/sm)m∈N converges to a rational number r/s from the left, then the sequence
of right q-deformed rational numbers ([rm/sm]♯q)m∈N ∈ RN converges to [r/s]♭q.

By Theorem 2.12 Part (1), for every irrational number t, there is a unique q-deformation
[t]q, which is the limit of the q-deformation of any rational sequence limiting to t. We call
the set

Iq := {[t]q | t ∈ R \ Q}
the q-deformed irrational numbers. See [LMG21, Proposition 4.3, Examples 4.4–7] for an
explicit formula for the q-deformation of quadratic irrational numbers.

Proof. First, we prove (1).
As noted in [LMGOV21, Section 2], the negative q-rationals are the image of the positive

q-rationals under the continuous bijection

x 7→ − q

x
,

with ∞ sent to 0 and vice versa. Thus it is sufficient to give a proof for positive t.
Let (rn/sn)n∈N converge to an irrational number t ∈ R \ Q. It is well-known that every

irrational number has a unique infinite continued fraction expansion [a1, a2, ...]. We can
approximate the sequence (rn/sn)n∈N by the ‘sequence of convergents’ ([a1, a2, ..., an])n∈N.
Since [r/s]♯q > [r′/s′]♯q if and only if r/s > r′/s′, the right q-deformed sequence ([rn/sn]♯q)n∈N

is also approximated by ([a1, a2, ..., an]♯q)n∈N. Thus, we can assume without loss of generality
that rn/sn = [a1, a2, ..., an] for all n ∈ N.

We split (rn/sn)n∈N into two disjoint subsequences. Define the index set I ⊂ N by

I :=
{
n ∈ N | rn

sn
< t

}
.

Both limn∈I rn/sn and limn/∈I rn/sn exist, as each sequence is monotone and bounded.
Denote the former by [t]−q and the latter by [t]+q .

We would like to show [t]−q = [t]+q . It is sufficient to show that

lim
n→∞

∣∣∣∣[rnsn
]♯
q

−
[
rn−1

sn−1

]♯
q

∣∣∣∣ = 0.

Let [rn/sn]♯q = R♯
n(q)/S♯

n(q), and let [rn−1/sn−1]♯q = R♯
n−1(q)/S♯

n−1(q), using the notation
of Definition 2.7. By the matrix formula for right q-deformed rationals (Proposition 2.11),
we have ∣∣∣∣R♯

n(q)
S♯
n(q)

− R♯
n−1(q)

S♯
n−1(q)

∣∣∣∣ = qa2+a4+...+an−1 | det βa,q|
S♯
n(q)S♯

n−1(q)
.

By construction, S♯
n(q) and S♯

n−1(q) both have constant term 1 and positive coefficients,
so S♯

n(q),S♯
n−1(q) ≥ 1. And one can compute that

det βa,q = qa1−a2+...+an−1−an ,
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therefore, ∣∣∣∣R♯
n(q)

S♯
n(q)

− R♯
n−1(q)

S♯
n−1(q)

∣∣∣∣ ≤ qa1+a3+...+an−1−1.

(Technically this assumes n is even, however an all but identical argument works for n
odd.) Given the assumption that t (and therefore also rn

sn
for sufficiently large n) are

positive, we have a1, ..., an−1 ≥ 0, so since q < 1 we deduce that

lim
n→∞

∣∣∣∣[rnsn
]♯
q

−
[
rn−1

sn−1

]♯
q

∣∣∣∣ = 0.

To prove that the limit is uniquely determined by t, we note again that [r/s]♯q > [r′/s′]♯q if
and only if r/s > r′/s′. Thus, between any two ‘q-irrationals’ [t]q, [t′]q for t ̸= t′, there is a
right q-rational [r/s]♯q, so we cannot have [t]q = [t′]q.

Now we prove (2). As in the irrational case, we can assume that r/s is positive.
Let [a1, ..., a2n] be the continued fraction expansion of r/s. Any right limiting sequence
approaching r/s can be approximated by the sequence (rm/sm)m∈N, where rm/sm has
continued fraction expansion am = [a1, ..., a2n − 1, 1,m] (unless a2n = 1, in which case
rm/sm has expansion am = [a1, ..., a2n−1 + 1,m]). Since [r/s]♯q > [r′/s′]♯q if and only
if r/s > r′/s′, the corresponding right q-deformed sequence is also approximated by
([rm/sm]♯q)m∈N.

Let [r/s]♯q = R♯(q)/S♯(q), and [rm/sm]♯q = R♯
m(q)/S♯

m(q), as defined in Definition 2.7
We view the right q-deformed rational numbers as vectors in projective space. Applying
the matrix formula for right q-rationals (Proposition 2.11), we have

lim
m→∞

 q1−m

[m]q−1
R♯
m(q)

q1−m

[m]q−1
S♯
m(q)

 = lim
m→∞

1
[m]q−1

qa2+a4+...+a2nβam,q

[
1
0

]

= qa2+a4+...+a2nσ−a1
1,q σ

a2
2,q...σ

−a2n−1
1,q σa2n−1

2,q σ−1
1,q

[
0 0
1 q−1 − 1

] [
1
0

]

=
[
R♯(q)
S♯(q)

]
.

The final claim (3) can be proved in essentially the same way as (2), replacing the
sequence [a1, ..., a2n − 1, 1,m] with the sequence [a1, ..., a2n,m]. □

Remark 2.13. In the preceding proof, we found that right q-deformed rationals correspond
to limits of sequences of the form ([a1, ..., a2n+1,m]♯q)m∈Z, and left q-deformed rationals
correspond to limits of sequences of the form ([a1, ..., a2n,m]♯q)m∈Z. Note that, for ordinary
continued fractions,

lim
m→∞

[a1, ..., a2n+1,m] = [a1, ..., a2n+1], lim
m→∞

[a1, ..., a2n,m] = [a1, ..., a2n].

Thus, in a sense, right q-rationals correspond to odd continued fraction expansions, and
left q-rationals to even continued fraction expansions.
2.5. Topology of the q-Farey tessellation. We briefly summarise here the most
important topological feature of the q-deformed Farey tessellation: it is an open disk,
and the boundary of its closure is a circle, consisting of exactly the q-deformed rational
curves, and the q-deformed irrational numbers. Recall that Qq denotes the union of
the q-deformed rational curves (including their endpoints, the left and right q-deformed
rational numbers), and that Iq denotes the q-deformed irrational numbers.
Proposition 2.14. Let Lq denote the proper subset of H covered by the q-deformed Farey
tessellation.
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(1) The set Lq is homeomorphic to an open disk.
(2) The boundary ∂Lq is equal to Qq ⊔ Iq.
(3) There is a homeomorphism Qq ⊔ Iq → R ∪ {∞}, which restricts to the identity on

the left and right q-deformed rationals, and the q-deformed irrationals. So, by Part
(2), ∂Lq ∼= R ∪ {∞}.

(4) The set Qq is dense in ∂Lq.

We expect the following conjecture to hold as well.

Conjecture 2.15. The closure of the q-deformed Farey tessellation Lq is homeomorphic
to a closed disk.

Because the q-deformed rational curves are dense in the boundary of Lq, these curves
are arguably the true q-deformed analogues of the rational numbers, hence the notation
Qq for their union.

Proof of Proposition 2.14. Part (1) of Proposition 2.14 is true by construction; the q-
deformed Farey tessellation is homeomorphic to the classical Farey tessellation, which is
homeomorphic to an open disk.

The homological counterpart of Part (2) is Theorem 4.13 below, and the proof of Part
(2) is virtually the same as the proof of Theorem 4.13.

We will prove Part (3). Part (4) follows immediately from Part (3) and Theorem 2.12.
It is not hard to check that for any two real numbers t < t′ (which may be rational or

irrational), we have the following inequalities:

(2) [t]♭q ≤ [t]♯q < [t′]♭q ≤ [t′]♯q.

The left (resp. right) weak inequality is strict if and only if t (resp. t′) is rational. Define
an embedding ι : Qq ⊔ Iq → R ∪ {∞} as follows. For t ∈ R ∪ {∞},

ι([t]♭q) = [t]♭q, ι([t]♯q) = [t]♯q.

Extend ι to Qq by continuously mapping the hyperbolic geodesic between [r/s]♭q and [r/s]♯q
onto the real interval between [r/s]♭q and [r/s]♯q. By Eq. (2), ι is indeed an embedding.

To complete the proof, we just need to show that ι is surjective. Consider any p ∈
R∪ {∞}. For convenience, assume that 0 < p < ∞. Suppose that p /∈ ι(Qq); we will show
that p ∈ Iq. By assumption, p does not lie in the interval in R ∪ {∞} between [∞]♭q and
[∞]♯q. By the proof of Theorem 2.12, the sequence [n]♯q for n ≥ 0 is a monotone increasing
sequence converging to [∞]♭q. So, there exists a1 ≥ 0 such that

[a1]♯q < p < [a1 + 1]♯q = [a1, 1]♯.

The sequence [a1, n]♯q for n ≥ 1 is a monotone decreasing sequence converging to [a1]♯q,
by the proof of Theorem 2.12. Since p > [a1]♯q, there exists a2 ≥ 1 such that

[a1, a2 + 1]♯q < p < [a1, a2]♯q.

Continuing in this manner, we obtain an infinite q-deformed continued fraction expansion
[a1, a2, ...]♯q converging to p. By the first part of Theorem 2.12, the number p is the q-
deformation of the irrational number with continued fraction expansion [a1, a2, ...], which
proves that p ∈ Iq as desired. This completes the proof. □



14 ASILATA BAPAT, LOUIS BECKER, AND ANTHONY M. LICATA

3. A homological interpretation of q-deformed rational numbers

The aim of this section is to give a concrete homological interpretation of q-deformed
rational numbers. Our main tool will be an abstract gadget called a Harder–Narasimhan
automaton, whose construction depends on the choice of a Bridgeland stability condition.
We write down a particular Harder–Narasimhan automaton for the 2-Calabi–Yau category
associated to the A2 quiver, which yields the desired application. We recall details about
Bridgeland stability conditions and Harder–Narasimhan automata in Appendix B.

3.1. The 2-Calabi–Yau category associated to the A2 quiver. We follow the
construction of the 2-Calabi–Yau category associated to the A2 quiver given in [ST01,
§4a] and [BDL20, §2.1]. Let P (A2) denote the path algebra of the double of the A2 quiver.
This quiver has two vertices, denoted 1 and 2, and two oriented edges, one from 1 to 2
and the other from 2 to 1. We denote by Z2 the quotient of this path algebra by the
two-sided ideal generated by all paths of length 3. We regard Z2 as a differential graded
algebra with grading by path length, and zero differential. Let DGM2 be the category
of differential graded modules over Z2, and let D2 be the derived category of differential
graded modules over Z2 (obtained from DGM2 by inverting quasi-isomorphisms; note that
this is not the same as the standard derived category of the abelian category DGM2). For
i = 1, 2, let Pi denote the differential graded module Z2(i), where (i) is the trivial path at
the vertex i. The objects {P1, P2} form an A2 configuration of spherical objects in D2, in
the sense of [ST01, Definition 1.1]. Let C2 denote the full triangulated subcategory of D2
generated by P1, P2 under extensions. Then C2 is a 2-Calabi–Yau category.

Especially important for our purposes are the following structural features of C2.
(1) There is a unique morphism (up to scaling) from P1 to P2, and also from P2 to P1.

We denote the cones of these morphisms by P12 and P21 respectively. They are
indecomposable spherical objects of C2.

(2) The extension closure of P1, P2 is the heart of a bounded t-structure on C2. We
call this t-structure the standard t-structure on C2, and denote its heart by ♡std.
Objects in the standard heart are direct sums of the indecomposables P1, P2, P12
and P21.

(3) Every spherical object X in C2 gives rise to an autoequivalence σX on C2 known
as the spherical twist along X. These autoequivalences form a group, generated
by σP1 , σP2 (henceforth simply σ1, σ2). The group of spherical twists is isomorphic
to the 3-strand braid group B3 = BA2 , inducing a (weak) braid group action on
C2 (see [KS00] and [ST01] for details). Let S be the set of isomophism classes of
spherical objects of C2. It is known that B3 acts transitively on this set; see e.g.
[BDL21, Theorem 1.1].

3.2. Standard stability conditions on C2. The proofs in the following section use a
choice of a stability condition on C2. Any choice will work, but for convenience we choose
a degenerate standard stability condition, defined as follows.

Definition 3.1. A stability condition τ = (P , Z) is standard if P([ϕ, ϕ+ 1)) = ♡std for
some ϕ ∈ R. A standard stability condition τ is degenerate the phase of P1 is equal to the
phase of P2.

Since P1 and P2 are simple in ♡std, they are automatically stable in any standard
stability condition. In a degenerate standard stability condition, the objects P12 and P21
are also semistable of the same phase.

We will use the following proposition. It is a serious result, and corresponding versions
of this proposition are true for any 2-Calabi–Yau category of a finite ADE type quiver.
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Several proofs of versions of this proposition are known, in various levels of generality:
see, e.g., [IUU10, Theorem 1], [Ike14, Proposition 4.13], [AMY19, Corollary 9.5], [BDL21,
Theorem 1.2].
Proposition 3.2.

(1) The space Stab(C2) is connected.
(2) For any stability condition τ ∈ Stab(C2), there exists a braid β ∈ B3 such that βτ

is a standard stability condition.
From now on, we fix a degenerate standard stability condition τ . The spherical objects in

C2 admit a simple classification, based on their τ -HN filtration factors. This classification
will be a key tool in later proofs. Given a set S ⊂ Ob C2, let [s | s ∈ S] denote the set of
all objects of C2 whose τ -HN filtration factors consist of shifted copies of elements of S.
For example, [P1, P12] consists of all objects whose τ -HN filtration factors are shifts of
either P1 or P12.

The following proposition is similar to [BDL20, Proposition 5.8].
Proposition 3.3. For each spherical object X ∈ S, one of the following is true:

(1) X ∈ [P2, P21],
(2) X ∈ [P21, P1],
(3) X ∈ [P1, P12],
(4) X ∈ [P12, P2].

3.3. An automaton for the category C2. In this section we write down an explicit
HN automaton for C2 (see Definition B.4). In the next section we discuss its implications
on the dynamics of the braid group action on spherical objects of C2. Once again, fix τ to
be a degenerate standard stability condition. To construct a τ -HN automaton for C2, we
specify the following pieces of data.

(1) Fig. 6 simultaneously depicts a B3-labelled graph Θ and a Θ-set S ⊂ ObC2.

[P1, P12] [P21, P1]

[P12, P2] [P2, P21]

σ2

σ−1
2

σ1
σ−1

2

σ2

σ−1
1

σ1

σ−1
1

σ−1
2

σ−1
1

σ1
σ2

Figure 6. A B3-labelled graph Θ, together with an assignment of a subset
of Ob C2 to each vertex.

(2) Fig. 7 depicts a Θ-representation M . As shown in Fig. 6, the set at every
vertex has the form [A,B], where A,B ∈ Στ . The summands in the module
Z[q±]2 = Z[q±] ⊕ Z[q±] at that vertex should be thought of as being indexed by A
and B respectively.

(3) The morphism i : S → M is as follows. At each vertex, the map [A,B] → Z[q±]2
takes an object X ∈ [A,B] to the A and B coordinates of HNτ (X). The proof that
i is Θ-equivariant is a calculation that proceeds exactly as in the proof of [BDL20,
Proposition 5.1].

(4) Finally, hv : Mv → Z[q±]Στ is simply the inclusion map. We need to check that for
any vertex v and any X ∈ Sv, we have

HNτ (X) = hv(iv(X)).
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Z[q±]2 Z[q±]2

Z[q±]2 Z[q±]2

Id

(
q−1 0
1 1

)

(
q−1 q−1

0 1

)
Id

(
1 1
0 q

)

(
1 0
q q

)

(
1 1
0 q

)

Id(
1 0
q q

)

(
q−1 0
1 1

)

Id

(
q−1 q−1

0 1

)

Figure 7. A Θ-representation M .

In other words, that the τ -HN multiplicity vectors transform according to matrices
in Fig. 7. This check, which is involved, is essentially identical to the one done
in [BDL20, Proposition 5.1]. We omit the details here.

3.4. The dynamics of the braid group action on spherical objects. We now define
two kinds of functionals S × S → Z[q±]. The first of these is an extension of a functional
{P1, P2} × S → Z[q±] that counts the ‘occurences’ of the building block complexes P2 and
P1, respectively, in a complex X ∈ S. We continue to denote by τ a degenerate standard
stability condition on C2.

We know that in this case, the set of indecomposable semistable objects in the heart is
just

Στ = {P1, P2, P12, P21}.
With these coordinates, for any X ∈ T , we write HNτ (X) as

HNτ (X) = (π1(X), π2(X), π12(X), π21(X)).

Definition 3.4. We define functionals S × S → Z[q±] as follows. For any X ∈ S,

occq(P1, X) := π2(X) + π12(X) + π21(X),
occq(P2, X) := π1(X) + π12(X) + π21(X).

For any X, Y ∈ S, let X = βP1, then

occq(X, Y ) = occq(P1, β
−1Y ).

Remark 3.5. Note that occq(P1, X) counts the ‘occurrences’ of P2 in X and vice versa,
which is notationally confusing but somewhat unavoidable. Every occurence of P2 in X
must correspond to an HN filtration factor of the form P2, P12 or P21, up to shift. Thus,
summing the number of these factors, with degree, gives the number of P2’s, with degree.

Definition 3.6. The functional occq has a close cousin, homq:

homq(X, Y ) :=

 qn(q−2 − q−1), Y ∼= X[n],∑
n∈Z dimk Hom(X, Y [n])q−n, otherwise.

The following theorems relate these functionals to the q-deformed rational numbers.
For reasons that will soon be obvious, for any X ∈ S we write X ≥ 0 to mean X ∈
[P2, P21] ∪ [P21, P1], and X ≤ 0 to mean X ∈ [P1, P12] ∪ [P12, P2].
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Theorem 3.7. For every X ∈ S,

(−q)−ϵoccq(P2, X)
occq(P1, X) ,

is a right q-deformed rational number, where

ϵ =

 0, X ≥ 0,
1, X ≤ 0.

Moreover, the induced map from S to the set of q-deformed rationals is B3-equivariant,
and bijective (up to shift).

Theorem 3.8. For every X ∈ S,

(−1)ϵqϵ−1 homq(X,P2)
homq(X,P1)

,

is a left q-deformed rational number, where

ϵ =

 0, X ≥ 0, X ̸∼= P2[n],
1, X ≤ 0, X ̸∼= P1[n].

Moreover, the induced map from S to the set of left q-deformed rationals is B3-equivariant,
and bijective (up to shift).

These theorems were first proven in the case q = 1, where they are identical, by Rouquier
and Zimmermann [RZ03, Proposition 4.8]. The proofs of these theorems for arbitrary q
will occupy the rest of this section. In [BDL20, Proposition 5.1], a proof of the original
Rouquier–Zimmermann bijection is established using the theory of Harder–Narasimhan
automata; it is this proof technique that we adapt to prove the above theorems. More
precisely, to prove Theorem 3.7, we will use the automaton introduced in Section 3.3 to
analyse the dynamics of spherical objects in C2 under the braid group action.

The proof of Theorem 3.7 will proceed by an induction on the length of elements of
B3. To facilitate this induction, we introduce a normal form for the three-strand braid
group B3, which is (mostly) recognised by the automaton (that is, any braid in this form
that we actually need corresponds to a path along the edges of the automaton). Let
ω := σ2σ1σ2σ1σ2σ1 be the generator of the centre of B3,

Lemma 3.9 (Continued normal form). Consider any braid β ∈ B3. We can write β
uniquely in one of four forms, determined by the image of P1:

β =



σ−a1
1 σa2

2 ...σ
−a2n−1
1 σa2n

2 σM1 ω
N , βP1 ≥ 0, βP1 ̸= P1[m], P2[m],(3)

σa1
1 σ

−a2
2 ...σ

a2n−1
1 σ−a2n

2 σM1 ω
N , βP1 ≤ 0, βP1 ̸= P1[m], P2[m],(4)

σM1 ω
N , βP1 = P1[m],(5)

σ1σ2σ
M
1 ω

N , βP1 = P2[m],(6)
where a1 ∈ N, a2, ..., a2n ∈ N \ 0, M,N ∈ Z.

Taking P1 as the counterpart of ∞, and P2 as the counterpart of 0, Lemma 3.9
corresponds exactly to the continued fraction expansion in Section 2.1.
Proof. Consider any braid β ∈ B3. Let β denote the corresponding element of PSL2(Z)
(under the standard surjection B3 → PSL2(Z).) Let β

[
1
0

]
=
[
r
s

]
. Then by Proposition 2.2,

there exists a matrix β̂′ of the form
β′ = σ−a1

1 σa2
2 ...σ

−a2n−1
1 σa2n

2 ,
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such that β′
[

1
0

]
=
[
r
s

]
. Since β′ and β act identically on

[
1
0

]
, we have that β′ = βσM1

for some M ∈ Z (this can be deduced from the fact that every matrix in PSL2(Z) has
determinant 1). Lemma 3.9 then follows from the fact that the kernel of B3 → PSL2(Z)
is the centre Z(B3). □

If β is given by the form in Lemma 3.9, we say that β is written in (even) continued
form. We say that β is written in strict continued form if any of the following hold:

(1) β is written in form (3), M ≤ 0;
(2) β is written in form (4), M ≥ 0;
(3) β is written in form (5);
(4) β is written in form (6), M ≤ 0.

The following corollary of Lemma 3.9 follows from the calculation:
σM1 ω

NP1 = P1[−2N −M ].

Corollary 3.10 (Strict continued normal form). For any X ∈ S, there exists a braid β
in strict continued form such that βP1 = X.

Theorem 3.7 is an immediate corollary of the matrix formula for right q-rationals
(Proposition 2.11), and the following Propositions 3.11 and 3.12:

Proposition 3.11. Consider any β ∈ B3 which can be written in strict continued form,
and let β be the corresponding q-deformed matrix. Up to multiplication by −1 and by
powers of q, we have an equality:

β =
[

occq(P2, βP1) (−q)−ϵ occq(P2, βP2)
(−q)ϵ occq(P1, βP1) occq(P1, βP2)

]
,

where

ϵ =

 0, βP2 ≥ 0,
1, βP2 ≤ 0.

Proposition 3.12. Consider any β ∈ B3, which cannot be written in strict contined form,
then, up to multiplication by −1 and by powers of q, we have:

β =
[
occq(P2, βP1) (−q)ϵ−1 occq(P2, βP2)
occq(P1, βP1) (−q)2ϵ−1 occq(P1, βP2)

]
where

ϵ =

 0, βP2 ≥ 0,
1, βP2 ≤ 0.

Proof of Proposition 3.11. Consider any β ∈ B3 which can be written in strict continued
form. We induct on the length of β. The base case β = Id is trivial. Since multiplication
by ω corresponds to scalar multiplication by a power of q, we can assume without loss of
generality that the ωN -term in β is trivial (i.e. N = 0).

For the induction argument, note that β, read from right to left, defines a path in Θ
(Fig. 6). We will ignore the case that β is in the forms (5) and (6) (in the notation of
Lemma 3.9), since this can be easily done by hand.

Let βl be the braid consisting of the last l elementary braids in β, and suppose that

βl =
[

occq(P2, βlP1) (−q−1)ϵ occq(P2, βlP2)
(−q)ϵ occq(P1, βlP1) occq(P1, βlP2).

]
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There are eight cases, depending on whether β has the form (3) or (4) in the notation
of Lemma 3.9, and on the value of βl+1β

−1
l . Note that βlP1 ∈ [Pi, Pj] if and only if

βlP2 ∈ [Pi, Pj]. For illustrative purposes, we will assume that β has the form (3) (and
thus ϵ = 0), that βlP1, βlP2 ∈ [P21, P1], and βl+1 = σ2βl. First we calculate

βl+1 = σ2βl

=
[
1 0
1 q−1

] [
occq(P2, βlP1) occq(P2, βlP2)
occq(P1, βlP1) occq(P1, βlP2).

]

=
[

occq(P2, βlP1) occq(P2, βlP2)
occq(P2, βlP1) + q−1 occq(P1, βlP1) occq(P2, βlP2) + q−1 occq(P1, βlP2).

]
On the other hand, by definition we have equalities

[
π21(βlP1) π21(βlP2)
π1(βlP1) π1(βlP2)

]
=
[

occq(P1, βlP1) occq(P1, βlP2)
occq(P2, βlP1) − occq(P1, βlP1) occq(P2, βlP2) − occq(P1, βlP2)

]
and [

π2(βl+1P1) π2(βl+1P2)
π21(βl+1P1) π21(βl+1P2)

]
(7)

=
[
occq(P1, βl+1P1) − occq(P2, βl+1P1) occq(P1, βl+1P2) − occq(P2, βl+1P2)

occq(P2, βl+1P1) occq(P2, βl+1P2)

]
(8)

Applying the linear representation embedded in Θ,[
π2(βl+1P1) π2(βl+1P2)
π21(βl+1P1) π21(βl+1P2)

]
=
[
q−1 0
1 1

] [
π21(βlP1) π21(βlP2)
π1(βlP1) π1(βlP2)

]
(9)

=
[
q−1 occq(P1, βlP1) q−1 occq(P1, βlP2)

occq(P2, βlP1) occq(P2, βlP2)

]
(10)

Comparing Eq. (7) and Eq. (9), gives us that for i ∈ {1, 2},
occq(P2, βl+1Pi) = occq(P2, βlPi),
occq(P1, βl+1Pi) = q−1 occq(P1, βlPi) + occq(P2, βlPi),

which proves that

βl+1 =
[
occq(P2, βl+1P1) occq(P2, βl+1P2)
occq(P1, βl+1P1) occq(P1, βl+1P2).

]
.

Verifying the other seven cases (using the exact same procedure) completes the induction
argument. □

The proof of Proposition 3.12 is virtually the same as the proof of Proposition 3.11.
Any braid which cannot be written in strictly normal form is a right multiple of a braid
which can be written in strictly normal form by σM1 , thus one can prove this case using
the same method as in part 1, but changing the base case appropriately.

This completes the proof of Theorem 3.7.
A proof of Theorem 3.8 can be constructed independently, analogously to the above

proof. In lieu of doing that, we will bootstrap Theorem 3.8 to Theorem 3.7, by way of the
following relationship between occq and homq:

Lemma 3.13 (hom-values). The functional homq(P1,−) takes the following values:

homq(P1, X) =

 (1 − q−1) occq(P2, X) + q−1 occq(P1, X), X ≥ 0
(q−2 − q−1) occq(P2, X) + q−1 occq(P1, X), X ≤ 0.
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Symmetrically, the functional homq(P2,−) takes the following values:

homq(P2, X) =

 (q−2 − q−1) occq(P1, X) + q−1 occq(P2, X), X ≥ 0,
(1 − q−1) occq(P1, X) + q−1 occq(P2, X), X ≤ 0.

Proof of Theorem 3.8. Consider any X ∈ S. Assume that X ̸= P1, P2. By Corollary 3.10,
we can write X = βP1 for some β in strict continued form. It is easy to check that βP1 ≥ 0
implies β−1P1 ≤ 0 (and vice versa), and thus by Proposition 3.11 we have the following
equality (up to scaling):

β =
[

occq(P2, β
−1P1) (−q)ϵ−1 occq(P2, β

−1P2)
(−q)1−ϵ occq(P1, β

−1P1) occq(P1, β
−1P2)

]−1

=
[

occq(P1, β
−1P2) (−1)ϵqϵ−1 occq(P2, β

−1P2)
(−1)ϵq1−ϵ occq(P1, β

−1P1) occq(P2, β
−1P1)

]
.

Let R♭(q)/S♭(q) be the rational function representation of [β(∞)]♭q, using the notation in
Definition 2.7. Combining the matrix formula for right q-rationals (Proposition 2.11) and
the hom-values lemma (Lemma 3.13), we have (again up to scaling):[

R♭(q)
S♭(q)

]
= β

[
q−1

q−1 − 1

]

=
[
q−1 occq(P1, β

−1P2) + (−1)ϵ(qϵ−2 − qϵ−1) occq(P2, β
−1P2)

(−1)ϵq−ϵ occq(P1, β
−1P1) + (q−1 − 1) occs q(P2, β

−1P1)

]

=
[

homq(P1, β
−1P2)

(−1)ϵq1−ϵhomq(P1, β
−1P1)

]

=
[

homq(X,P2)
(−1)ϵq1−ϵhomq(X,P1)

]
This shows that

(−1)ϵqϵ−1 homq(X,P2)
homq(X,P1)

is indeed a left q-deformed rational number, and that the map sending βP1 to [β(∞)]♭q is
a bijection.

We now prove B3-equivariance. By construction, we have that for every X ∈ S, there is
some β ∈ B3, such that X = βP1 and

(−1)ϵqϵ−1 homq(βP1, P2)
homq(βP1, P1)

= β
homq(P1, P2)
homq(P1, P1)

= β[∞]♭q.

Consider any β1, β2 ∈ B3 such that β1P1 = β2P1. To prove B3-equivariance, it will be
sufficient to show that β1 and β2 act identically on [∞]♭q. By elementary braid group
arithmetic, β1 = β2σ

n
1 for some n ∈ Z. Since σ1 fixes [∞]♭q, we have that

β1[∞]♭q = β2[∞]♭q.
This completes the proof of B3-equivariance. □

4. A family of compactifications of the space of Bridgeland stability
conditions

The aim of this section is to propose a family of compactifications of the space of
Bridgeland stability conditions of a triangulated category indexed by q > 0. This
construction generalises results of [BDL20]. In particular, for each real number q > 0,
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the corresponding compactification will be the closure of an embedding (via q-masses)
of Stab(T )/C into a fixed infinite projective space. We prove and conjecture several
properties of this construction for 2-CY categories associated to connected quivers, and
analyse the construction in detail for the category C2.

4.1. The deformed mass embedding. Suppose that T is the 2-CY category associated
to a connected quiver (we will specialise to C2 again shortly). Let S be the set of spherical
objects of T . Let RS be the space of real-valued functions on S. Let P(RS) denote the
projectivisation of this space; that is, P(RS) = (RS \ 0)/R×. Recall the definition of the
q-mass of an object X, given a stability condition τ , denoted mq,τ (X) (Definition B.3).
For any q > 0, we have a map

mq : Stab(T )/C → P(RS),
defined as

mq(τ) = [mq,τ (X)]X∈S.

The following proposition states that a stability condition can be recovered uniquely up
to C-action from its q-mass vector.
Proposition 4.1 (Injectivity). Let T be the 2-CY category associated to a connected
quiver. Let S be the set of spherical objects of T . Then the map mq : Stab(T )/C → P(RS)
is injective.

Injectivity in the case that q = 1 is proven in [BDL20, Proposition 4.1]. This proof works
in general, given q-deformed versions of two trigonometric relations: Ikeda’s ‘q-deformed tri-
angle inequality’ [Ike20, Lemma 3.6], and a ‘q-deformed SSS-triangle congruence theorem’,
which we describe presently.

For any point z ∈ H ∪ R>0, let ϕ(z) denote the phase of z. For any pair of points
z1, z2 ∈ H∪R>0, say that the triangle associated to (z1, z2) is the Euclidean planar triangle
with vertices (0, z1, z1 + z2).

Classically, the lengths of the sides of the trangle associated to (z1, z2) would be |z1|,
|z2| and |z1 + z2|. For our purposes however, it is natural to ‘q-deform’ this measure. The
q-deformed length of a side of this triangle will involve both the classical length, and
the phase of the corresponding vector. Precisely, for v ∈ {z1, z2, z1 + z2}, the q-deformed
length of the side with classical length |v| is qϕ(v)|v|. Ikeda’s q-deformed triangle inequality
([Ike20, Lemma 3.6]) says that the q-deformed side-length satisfies the triangle inequality:

qϕ(z1+z2)|z1 + z2| ≤ qϕ(z1)|z1| + qϕ(z2)|z2|.
The next lemma says that the classical SSS-property is also preserved under q-deformation:
the q-deformed side-lengths uniquely determine the triangle (up to congruence).
Lemma 4.2 (q-SSS). Let z1, z2, z

′
1, z

′
2 ∈ H ∪ R>0, and suppose that

qϕ(z1)|z1| = qϕ(z′
1)|z′

1|,
qϕ(z2)|z2| = qϕ(z′

2)|z′
2|,

qϕ(z1+z2)|z1 + z2| = qϕ(z′
1+z′

2)|z′
1 + z′

2|.
Then the triangle associated to (z1, z2) is congruent to the triangle associated to (z′

1, z
′
2).

Proof. Assume that z1 = z′
1 = 1 (by rotating and scaling appropriately). For convenience,

let
ϕ2 := ϕ(z2), m2 := |z2|, z12 = z1 + z2, ϕ12 = ϕ(z12), m12 = |z1 + z2|, c = qϕ2m2.

To prove the proposition, it is enough to show that given the assumption, the vector z2 is
uniquely determined by the values qϕ2m2 and qϕ12m12. For any t ∈ [0, 1], let wt be the
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vector with phase t and length q−tc. We explicitly construct a function Tq,c : [0, 1] → R,
which maps t ∈ [0, 1] to qϕ(1+wt)|1 + wt|. If Tq,c is injective, then since Tq,c(ϕ2) = qϕ12m12,
we can derive ϕ2 from qϕ12m12. Thus given qϕ12m12 and qϕ2m2, we can derive ϕ2 and m2,
which determine z2.

By the law of cosines,

ϕ(1 + wt) = 1
π

cos−1
( 1 + cq−t cos(πt)√

1 + (cq−t)2 + 2cq−t cos(πt)

)
,

and
|1 + wt| =

√
1 + (cq−t)2 + 2cq−t cos(πt).

Thus,

Tq,c(t) = q
1
π

cos−1
(

1+cq−t cos(πt)√
1+(cq−t)2+2cq−t cos(πt)

)√
1 + (cq−t)2 + 2cq−t cos(πt).

The derivative of Tq,c on the interval [0, 1] simplifies to

T ′
q,c(t) = − qf(t)

π
√
c2 + q2t + 2cqt cos(πt)

(cqt ln2(q) sin(πt) + π2cqt sin(πt)),

where

f(t) = −t+
cos−1

(
1+cqt cos(πt)√

1+(cq−t)2+2cq−t cos(πt)

)
π

.

Since T ′
q,c is evidently negative, Tq,c is injective on [0, 1], completing the proof. □

Further, we conjecture that the mass map is a homeomorphism onto its image.
Conjecture 4.3. Let T be the 2-CY category associated to a connected quiver and let S
be the set of spherical objects of T . Let mq denote the mass map for a q ∈ (0,∞). Then

(1) The map mq is a homeomorphism onto its image.
(2) The closure of the image of mq is a compactification of Stab(T )/C and is a real

manifold with boundary.
(3) When T is a 2-CY category of type ADE, the closure of the image of mq is

homeomorphic to a closed Euclidean ball.
In the remainder of this section we prove a weaker implication of the above conjecture

in type A2; we show that the map mq is a homeomorphism onto its image, that the image
of mq is homeomorphic to an open Euclidean disk, and that the boundary of the closure
is homeomorphic to a circle.

The analogue of this conjecture for the 2-CY category of the A2-quiver at q = 1 is
proved in [BDL20, Proposition 5.6]. The proof of the (following) q-deformed proposition
is essentially the same (again switching the triangle inequality for the q-deformed analogue
from [Ike20, Lemma 3.6]).
Proposition 4.4 (Homeomorphism). The map mq : Stab(C2)/C → PS(R) is a homeo-
morphism onto its image. Moreover, the closure of mq(Stab(C2)/C) is compact in PS(R).
4.2. Analogy with the q-Farey tessellation. In the remainder of this section, we will
only work with the category C2, and with q ∈ (0, 1) (although everything we state is true
for q ∈ (1,∞) up to sign/orientation). We will use Mq to denote

Mq := mq(Stab(C2)/C) ⊂ PS(R).
Our goal is to classify the points in the ‘boundary’ ∂M q := M q \Mq. We will show that
the occq and homq functionals lie in ∂M q, and then use Theorem 3.7 and Theorem 3.8 to
completely describe ∂M q.
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In Section 2.2, we described ‘q-deformed rational curves’ as limits of sequences of
triangles in the q-deformed Farey tessellation. These curves satisfy two notable properties:

(1) they are in natural, B3-equivariant bijection with the rational numbers;
(2) their union is a dense subset of the boundary of the q-Farey tessellation.

The same phenomenon occurs in the embedding of Stab(C2)/C in projective space. Let
homq(X), occq(X) denote the functionals homq(X, · ), occq(X, · ) respectively, viewed as
ellements of PS(R). That is,

homq(X) := [homq(X, Y )]Y ∈S, occq(X) := [occq(X, Y )]Y ∈S.

Set
Iq,X = [homq(X), occq(X)] := {t occq(X) + (1 − t)homq(X) | t ∈ [0, 1]}

as indicated in the introduction to the paper. We will show shortly that the convex sets
Iq,X for X ∈ S arise as limits of stability conditions. The functional homq(X) should be
thought of as the correspondent of the left q-deformed rational number naturally associated
to X, and occq(X) as the correspondent of the right q-deformed rational; together with
their convex combinations, we obtain a perfect analogue of the q-deformed rational curve.

Recall the definition of standard stability conditions from Definition 3.1. The subset of
the space of stability conditions that corresponds to the first two Farey triangles is given
by the following definition:

Definition 4.5. [BDL20, §5.3] A standard stability condition τ is type-A if P21 is
semistable with respect to τ , and type-B if P12 is semistable with respect to τ . A type-A
(resp, type-B) standard stability condition is strictly type-A (resp. strictly type-B) if it is
not both type-A and type-B.

Let Λ denote the set of standard stability conditions, let ΛA (resp. ΛB) denote the set
of type-A (resp. type-B) standard stability conditions.

Think of ΛA as the Farey triangle with vertices 0,∞, 1, and ΛB as the Farey triangle
with vertices 0,∞,−1. So the initial edge E is the intersection ΛA ∩ ΛB. Its image under
the q-mass map is the interval between occq(P1) and occq(P2):

Lemma 4.6. We have an equality:
mq(ΛA ∩ ΛB) = {t occq(P1) + (1 − t) occq(P2) | t ∈ (0, 1)}.

We can now state how the ‘intervals’ Iq,X arise in ∂M q.

Proposition 4.7. Consider any X ∈ S, and suppose that X = βP1[n], then

lim
m→∞

mq(βσ−m
1 (ΛA ∩ ΛB)) = Iq,X .

Proof. We first prove this statement for β = id, and then deduce it for all other β by
equivariance. Thus we have to show that

lim
m→∞

mq(σ−m
1 (ΛA ∩ ΛB)) = Iq,P1 = [homq(P1), occq(P1)].

By Lemma 4.6,
mq(ΛA ∩ ΛB) = {t occq(P1) + (1 − t) occq(P2) | t ∈ [0, 1]}.

Since σ−1
1 P1 = P1[1], we have that

lim
m→∞

σ−m
1 occq(P1) = occq(P1).

Thus, all we need to show is that
lim
m→∞

σ−m
1 occq(P2) = homq(P1).
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Let X, Y ∈ S be such that X ≥ 0, Y ≤ 0. Consider the following abbreviated vector in
PS(R), representing σ−m

1 occq(P1)

σ−m
1


occq(P2, P1)
occq(P2, P2)
occq(P2, X)
occq(P2, Y )

 =


occq(P2, σ

m
1 P1)

occq(P2, σ
m
1 P2)

occq(P2, σ
m
1 X)

occq(P2, σ
m
1 Y )



=


q−m

[m]q−1

[m− 1]q−1(1 − q−1) occq(P2, X) + [m]q−1 occq(P1, X)
occq(P2, Y ) + (q−1 − 1)[m]q−1 occq(P2, Y ) + [m]q−1 occq(P1, Y )

 .
We multiply all the coordinates by q−1

[m]q−1
to obtain:

q−m−1

[m]q−1

q−1

[m−1]q−1

[m]q−1
(q−1 − q−2) occq(P2, X) + q−1 occq(P1, X)

q−1

[m]q−1
occq(P2, Y ) + (q−2 − q−1) occq(P2, Y ) + q−1 occq(P1, Y )

 .

When we send m to infinity, we get:
q−2 − q−1

q−1

(1 − q−1) occq(P2, X) + q−1 occq(P1, X)
(q−2 − q−1) occq(P2, Y ) + q−1 occq(P1, Y )

 .
Comparing to the hom-values lemma (Lemma 3.13), we see that this is indeed equal to
homq(P1). □

We will check that the appearance of these functionals really is a non-trivial result of
taking the closure.

Lemma 4.8 (Disjointness 1). For any X ∈ S and all t ∈ [0, 1],
t occq(X) + (1 − t)homq(X) /∈ Mq.

To prove this proposition, we need to give a more thorough account of the dynamics
of the q-deformed triangle inequality. Consider any stability condition τ ∈ Stab(C2)/C.
By the triangle inequality for the q-deformed mass [Ike20, Proposition 3.3], we have the
inequalities

mq,τ (P21) ≤ mq,τ (P1) +mq,τ (P2),(11)
mq,τ (P1) ≤ q−1mq,τ (P2) +mq,τ (P21),(12)
mq,τ (P2) ≤ mq,τ (P21) + qmq,τ (P1).(13)

The next lemma describes when these inequalities degenerate into equalities; it is the
q-analogue of the phenomenon noted at [BDL20, Remark 5.14].

Lemma 4.9 (q-Degeneracy). Consider any stability condition τ . If τ is strictly type-A
standard, then the triangle inequalities (11), (12), (13) are strict inequalities. If τ is not
strictly standard, then one of the triangle inequalities (11), (12), (13) is an equality.

Interchanging the indices 1 and 2 gives corresponding inequalities for type-B stability
conditions, for which Lemma 4.9 holds.

Now we are ready to prove the disjointness of Iq,X and Mq.
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Proof of Lemma 4.8. Consider any X ∈ S. That occq(X) /∈ Mq follows immediately from
the fact that occq(X,X) = 0, but mq,τ (X) > 0 for all τ ∈ Stab(C2)/C. Nevertheless, in
order to obtain disjointness for all the convex combinations, we must give a more involved
proof for both occq(X) and homq(X).

Suppose to generate a contradiction that occq(X), homq(X) ∈ Mq. Since every stability
condition is in the braid group orbit of Λ, we can assume that

occq(X) = mq(τ) and homq(X) = mq(τ ′),
for some τ, τ ′ ∈ Λ. Let X = βP1 for some braid β ∈ B3 which can be written in strict
continued form. Assume for convenience that β has form (3) in the notation of Lemma 3.9,
and therefore β−1σ1 has form (4), that is,
(14) β−1σ1 = σa1

1 σ
−a2
2 ...σ

a2n−1
1 σ−a2n

2 σM1 ω
N .

Thus by Proposition 3.11,

β−1σ1 =
[

occq(P2, β
−1P1[−1]) −q−1 occq(P2, β

−1P12)
−q occq(P1, β

−1P1[−1]) occq(P1, β
−1P12)

]

=
[

occq(P2, β
−1P1) −q−1 occq(P2, β

−1P2)
−q occq(P1, β

−1P1) occq(P1, β
−1P2)

] [
q−1 −q−1

0 1

]
.

Therefore, for i ∈ {1, 2},
(15) occq(Pi, β−1P12) = occq(Pi, β−1P1) + occq(Pi, β−1P2).
Now consider the two cases M = 0 and M > 0, where M is the exponent of σ1 in Eq. (14).
If M > 0, then βσ−1

1 has form (4), and a similar matrix calculation gives
(16) occq(Pi, β−1P21) = occq(Pi, β−1P2) − q occq(Pi, β−1P1).
If M = 0, then βσ2 has form (4), and another similar matrix calculation gives
(17) occq(Pi, β−1P21) = occq(Pi, β−1P1) − q−1 occq(Pi, β−1P2).
Assume i = 1 (the statements for i = 2 are needed for homq). Then Eqs. (15) to (17),
along with our assumption that mq(τ) = occq(C), imply that:
(18) mq,τ (P12) = mq,τ (P1) +mq,τ (P2),
and either
(19) mq,τ (P2) = mq,τ (P21) + qmq,τ (P1),
or
(20) mq,τ (P1) = q−1mq,τ (P2) +mq,τ (P21).
Thus the degeneracy lemma (Lemma 4.9) implies that τ is neither strictly type-A, nor
strictly type-B. Since we assumed that τ is standard, this implies that τ is both type-A
and type-B. However, any stability condition which is both type-A and type-B satisfies
(21) mq,τ (P21) = mq,τ (P1) +mq,τ (P2).
If we were to combine Eq. (21) with either Eq. (19) or Eq. (20), we would get that
mq,τ (Pi) = 0 for either i = 1 or i = 2, giving the desired contradiction (as the q-mass
associated to any stability condition is strictly positive on all complexes). A contradiction
can be generated in the cases that β has the form (4), (5), (6), in the same way. This
shows that occq(X) /∈ Mq.

Recall our supposition that homq = mq(τ ′). By our computation of homq in terms of
occq (Lemma 3.13), for j ∈ {1, 2, 12, 21} we have
(22) homq(P1, β

−1Pj) = (q−2 − q−1) occq(P2, β
−1Pj) + q−1 occq(P1, β

−1Pj).
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If we combine Eq. (22) with Eqs. (15) to (17), we re-derive Eqs. (18) to (20), replacing τ with
τ ′. This delivers the same contradiction as in the case of τ , proving that homq(X) /∈ Mq.

The proof for the rest of Iq,X follows from the argument above. The contradiction
we obtained from the degenerating inequalities carries through when we pass to convex
combinations. □

4.3. Embedding the boundary of Mq into Qq ∪ Iq. We will now use Theorems 3.7
and 3.8 (the Rouquier–Zimmermann Theorems) to define a homeomorphism (essentially
a projection map) from the sets Iq,X = [homq(X), occq(X)], lying in PS(R), onto the
corresponding q-deformed curves from Section 2.5.

Let Oq denote the set
Oq :=

⊔
X∈S

Iq,X ⊂ PS(R).

Recall that Qq denotes the union of all the q-deformed rational curves, together
with their endpoints. For X = P1, fix a homeomorphism from the interval Iq,P1 =
[homq(P1), occq(P1)] to the complete geodesic between 1/(1 − q) and ∞, together with
its endpoints. Extend this by the B3 action to a B3-equivariant ρq : Oq → Qq, so that ρq
maps homq(X) and occq(X) onto [r/s]♭q and [r/s]♯q respectively, where r/s is the rational
number corresponding to X. In particular, this implies that ρq is a bijection.

The closure of Oq is contained in M q, so we need to incorporate limits of points in Oq

into our classification of M q. Let Oq denote the union

Oq := Oq ∪
{

lim
n→∞

occq(Xn) | (Xn)n∈N ∈ SN
}
.

As the notation suggests, Oq is in fact the closure of Oq (see Lemma 4.11 below). We
now extend ρq to a B3-equivariant homeomorphism between Oq and Qq ∪ Iq, using the
following lemma.

Lemma 4.10. A sequence (occq(Xn))n∈N converges in PS(R) if and only if (ρq(occq(Xn)))n∈N
converges in Qq ∪ Iq. Two sequences (occq(Xn))n∈N and (occq(Yn))n∈N converge to the
same limit if and only if (ρq(occq(Xn)))n∈N and (ρq(occq(Yn)))n∈N converge to the same
limit.

Proof. For each statement, the forwards direction is trivial, by Theorem 3.7. The backwards
direction follows from the fact that, by Proposition 3.11, for any X, Y ∈ S, we have

occq(X, Y ) = occq(X,P1) occq(P2, Y ) + occq(X,P2) occq(P1, Y ).

So for any (Xn)n∈N and any Y ∈ S, if the sequence of fractions
(

occq(X,P2)
occq(X,P1)

)
n∈N

converges,
then so does the sequence of points in projective spaceoccq(Xn, P2)

occq(Xn, P1)
occq(Xn, Y )

 =

 occq(Xn, P2)
occq(Xn, P1)

occq(Xn, P1) occq(P2, Y ) + occq(Xn, P2) occq(P1, Y )

 .
□

Lemma 4.11. The set Oq, as defined above, is the closure of Oq.

Proof. Consider any sequence in Oq, with the form
(tn occq(Xn) + (1 − tn)homq(Xn))n∈N.

Assuming that the sequence (Xn)n∈N contains infinitely many distinct elements of S, using
elementary properties of limits of right q-deformed rational numbers, it can be shown that

lim
n→∞

ρq(occq(Xn)) = lim
n→∞

ρq(homq(Xn)).
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On the other hand, by the proof of Proposition 4.7, there exists a sequence (Yn)n∈N ∈ SN

such that
lim
n→∞

occq(Yn) = lim
n→∞

homq(Xn).

Thus,
lim
n→∞

ρq(occq(Xn)) = lim
n→∞

ρq(occq(Yn)),

and so by Lemma 4.10,

lim
n→∞

occq(Xn) = lim
n→∞

occq(Yn) = lim
n→∞

homq(Xn).

Thus, under the assumption that the sequence (Xn)n∈N contains infinitely many distinct
elements of SN, we have

lim
n→∞

(tn occq(Xn) + (1 − tn)homq(Xn))n∈N = lim
n→∞

occq(Xn).

□

The new points we have picked up by taking limits of occq functionals are also non-trivial
members of the closure M q.

Lemma 4.12 (Disjointness 2). For any p ∈ Oq, p /∈ Mq.

Proof. Consider any p ∈ Oq \ Oq, and suppose to generate a contradiction that p = mq(τ)
for some τ ∈ Λ. There exists a sequence (Xk)k∈N ∈ SN such that

lim
k→∞

occq(Xk) = p.

Let Xk = βkP1, where βk is in strict continued form. Passing to a subsequence if necessary,
we can assume for convenience that βk either has form (3) for all k ∈ N or form (4) for all
k ∈ N, in the notation of Lemma 3.9 (we can rule out the cases (5) and (6), since in these
cases the limit is trivial). Let’s assume that βk has form (3) for all k ∈ N. Then by the
proof of the first disjointness lemma (Lemma 4.8) we have that for all k ∈ N, i ∈ {1, 2},

(23) occq(P1, β
−1
k P12) = occq(P1, β

−1
k P1) + occq(P1, β

−1
k P2).

And either

(24) occq(P1, β
−1
k P21) = occq(P1, β

−1
k P2) − q occq(P1, β

−1
k P1),

or

(25) occq(P1, β
−1
k P21) = occq(P1, β

−1
k P1) − q−1 occq(P1, β

−1
k P2).

Pass to a subsequence so that we have Eq. (24) for all k ∈ N, or Eq. (25) for all k ∈ N.
Taking the limit, we get that

mq,τ (P12) = mq,τ (P1) +mq,τ (P2),

and either
mq,τ (P2) = mq,τ (P21) + qmq,τ (P1),

or
mq,τ (P1) = q−1mq,τ (P2) +mq,τ (P21),

As in the proof of the disjointness lemma part 1, this implies a contradiction. □
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4.4. Classification of the compactification of C2. The main theorem of this section
is that we have now given a full description of the closure.

Theorem 4.13. We have an equality
M q = Mq ⊔ Oq

in PS(R).

We have a homeomorphism ρq : Oq → Qq ∪ Iq. So, this theorem implies that ∂M q =
Oq

∼= R ∪ {∞}, that is, the boundary of the q-deformed Thurston compactification of
Stab(C2) is homeomorphic to a circle (see Part 3 of Proposition 2.14).

Remark 4.14. We stated without proof in Proposition 2.14 that Qq ∪ Iq is equal to the
boundary of the q-deformed Farey tesselation, so in fact ρq maps Oq onto ∂Lq. Thus, ρq is
a B3-equivariant homeomorphism from the boundary of the q-deformed compactification
of Stab(C2)/C onto the boundary of the q-deformed Farey tessellation.

Theorem 4.13 can be bootstrapped onto the proof of the corresponding [BDL20, Proposi-
tion 5.17] (which covers the case q = 1), using ‘q-deformed Gromov coordinates’. Consider
any standard stability condition τ ∈ Stab(C2)/C. By the triangle inequality for the
q-deformed mass function [Ike20, Proposition 3.3], there exist aτ , bτ , cτ ∈ R≥0 such that

mq,τ (P1) = bτ + cτ , mq,τ (P2) = aτ + qcτ , mq,τ (P21) = aτ + bτ .

We call (aτ , bτ , cτ ) the q-Gromov coordinates associated to τ . The following is the q-
deformation of [BDL20, Proposition 5.14]. The proof is essentially identical.

Proposition 4.15 (q-Linearity). Consider any standard stability condition τ ∈ Stab(C2)/C,
then

mq,τ = aτ occq(P1) + bτ occq(P2) + cτ occq(P21).

Proof of Theorem 4.13. We just need to show that
Mq ∪ Oq

is closed in PS(R) (since we have already shown that Oq ⊂ ∂M q). Consider any sequence
(mq(τn))n∈N which converges to a limit in PS(R). Let τn = βnτ

std
n , where each τ std

n is a
standard stability condition.

Suppose {βn | n ∈ N} is a finite set. The proof that limn→∞ mq(τn) lies in Mq∪Oq is easy,
and identical to that in the proof of [BDL20, Proposition 5.17]. Briefly, limn→∞ mq(τn)
lies in the union of βn(Λ) for finitely many βn, and each of these sets lies in Mq ∪ Oq by
[BDL20, Proposition 5.15].

Now suppose that {βn | n ∈ N} is an infinite set. Consider the two corresponding sets
of sequences

O1 =
{
(occ1(βnP1))n∈N, (occ1(βnP2))n∈N, (occ1(βnP21))n∈N

}
,

Oq =
{
(occq(βnP1))n∈N, (occq(βnP2))n∈N, (occq(βnP21))n∈N

}
.

Since Oq is sequentially compact, we can assume (simultaneously passing to subsequences
if necessary) that all these sequences converge. Let us denote the limits p1, p2, p21 and
p1,q, p2,q, p21,q respectively. It is shown that p1 = p2 = p21 in the proof of [BDL20,
Proposition 5.17]. The limit p1 = p2 = p21 corresponds to a real number, namely
ρq=1(p1) = ρq=1(p2) = ρq=1(p21). We split the remainder of the proof into two cases,
depending on whether ρq=1(p1) = ρq=1(p2) = ρq=1(p21) is rational or irrational.

Suppose that ρq=1(p1) = ρq=1(p2) = ρq=1(p21) is irrational. Then by the characterisation
of limits of right q-rationals above (Theorem 2.12), we have that ρq(p1,q) = ρq(p2,q) =
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ρq(p21,q) is the unique ‘q-irrational’ corresponding to ρq(p1) = ρq(p2) = ρq(p21). Since ρq
is a homeomorphism, this implies that p1,q = p2,q = p21,q.

By the q-linearity proposition (Proposition 4.15), we have sequences (an)n∈N, (bn)n∈N,
and (cn)n∈N in (R≥0)N such that

lim
n→∞

mq(τn) = lim
n→∞

mq(βnτ std
n )

= lim
n→∞

(
an occq(βnP1) + bn occq(βnP2) + cn occq(βnP21)

)
= p1,q = p2,q = p21,q.

Since p1,q = p2,q = p21,q ∈ Oq, we have shown that the limit lies in Oq.
Suppose that ρq=1(p1) = ρq=1(p2) = ρq=1(p21) is rational. By simultaneously passing to

subsequences, we can assume that the image under ρq of each of the sequences in O1 is either
an increasing sequence or a decreasing sequence. Let X ∈ S correspond to the rational
number ρq(p1) = ρq(p2) = ρq(p21), so by Theorem 2.12, each of ρq(p1,q), ρq(p2,q), ρq(p21,q)
is either the left or right q-deformation of ρq(p1). Thus, since ρq is a homeomorphism,
p1,q, p2,q, p21,q ∈ {occq(X), homq(X)}. Again, by Proposition 4.15, we have sequences
(an)n∈N, (bn)n∈N, (cn)n∈N ∈ (R≥0)N such that

lim
n→∞

mq(τn) = lim
n→∞

(
an occq(βnP1) + bn occq(βnP2) + cn occq(βnP21)

)
.

Since we are in projective space, we can normalise so that for all n ∈ N, an + bn + cn = 1.
Passing to subsequences if necessary, we can assume that each of (an)n∈N, (bn)n∈N, (cn)n∈N
converges. Then since occq(βnP1), occq(βnP2), occq(βnP21) converge to p1,q, p2,q, p21,q re-
spectively, we must have that

an occq(βnP1) + bn occq(βnP2) + cn occq(βnP21)
converges to a convex combination of p1,q, p2,q, p21,q. That is, there exists t ∈ [0, 1] such
that

lim
n→∞

(
an occq(βnP1) + bn occq(βnP2) + cn occq(βnP21)

)
= thomq(X) + (1 − t) occq(X).

Thus we have shown that limn→∞ mq(τn) lies in [homq(X), occq(X)]. This completes the
proof. □

Appendix A. Combinatorial properties of left q-deformed rational
numbers

A.1. Counting ideals in quivers. We return to thinking about right q-deformed ra-
tionals and left q-deformed rationals as formal rational functions in q. The following
theorem of Morier-Genoud and Ovsienko shows that the coefficients of R♯(q) and S♯(q)
have combinatorial significance.

For any oriented quiver G, consider the poset structure given by v1 ≻ v2 if there is an
edge v1 → v2. We call a subquiver of G an ideal (also known as a closure), if it is a (lower)
ideal of the corresponding poset. That is, an ideal of G is a subquiver H such that there
do not exist edges in G from vertices in H to vertices outside of H. For n ∈ N, an n-ideal
is an ideal of size n. For any quiver G, let Cn(G) denote the number of n-ideals in G.

Consider any rational number r/s ∈ (1,∞) with continued fraction expansion [a1, ..., a2n].
Let G♯

r/s denote the following quiver.

• • • • • • • • • • • • • • • • •
a1 − 1 a2 a3 a(2n−1)

a2n − 1

Let Ĝ♯
r/s denote the following truncated copy of Gr/s.
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• • • • • • • • • • • • • •

a2 − 1
a3 a(2n−1)

a2n − 1

Theorem A.1 ([MGO20, Theorem 4]). Consider any rational number r/s ∈ (1,∞), with
continued fraction expansion [a1, ..., an] and q-deformation[

r

s

]♯
q

= α♯0 + α♯1q + ...+ α♯N−1q
N−1 + α♯Nq

N

β♯0 + β♯1q + ...+ β♯M−1q
M−1 + β♯Mq

M
.

For all i ∈ N,
α♯i = Ci

(
Gr/s

)
, β♯i = Ci

(
Ĝr/s

)
.

The following corollary (which may have independent interest) will be used later on.
The left q-deformed rationals, which we motivated in Section 2 on geometric grounds, and
in Section 3 on homological grounds, also admit a combinatorial interpretation directly
analogous to that given for the right q-deformed rationals by Theorem A.1. The left
q-rational counts ideals in a slightly augmented version of G♯

r/s. Let G♭
r/s denote the

following quiver.

• • • • • • • • • • • • • • • • • •
a1 − 1 a2 a3 a(2n−1)

a2n − 1

And let Ĝ♭
r/s denote the following truncation.

• • • • • • • • • • • • • • •

a2 − 1
a3 a(2n−1)

a2n − 1

Corollary A.2. Consider any rational number r/s ∈ (1,∞), with left q-deformation[
r

s

]♭
q

= α♭0 + α♭1q + ...+ α♭N−1q
N−1 + α♭Nq

N

β♭0 + β♭1q + ...+ β♭M−1q
M−1 + β♭Mq

M
.

Then for all i ∈ N,
α♭i = Ci

(
G♭
r/s

)
, β♭i = Ci

(
Ĝ♭
r/s

)
.

We omit the proof, which is a straightforward application of Theorem A.1 by way of the
following formula for the left q-deformed rational (using the notation of Proposition 2.11):[

r

s

]♭
q

= qR♯(q) + R♯′(q) − qR♯′(q)
qS♯(q) + S♯′(q) − qS♯′(q) .

A.2. Left q-deformed rational numbers and the Jones polynomial. The next
theorem links left q-deformed rationals to the Jones polynomial of rational (two-bridge)
knots. The proof of the theorem uses Theorem 3.8, although we suspect there exists a
purely combinatorial proof.

Due to work by Lee and Schiffler [LS19, Theorem 1.2] and by Morier-Genoud and
Ovsienko [MGO20, Proposition A.3], the proof of this theorem is not difficult, and does
not involve any knot theory. For any rational number r/s ∈ (1,∞), let Vr/s(q) denote the
Jones polynomial associated with the class of rational knots parametrised by r/s, and let
|Vr/s(q)| denote the polynomial obtained by making each coefficient positive.
Theorem A.3. Consider any rational number r/s ∈ (1,∞) with left q-deformation[

r

s

]♭
q

= R♭(q)
S♭(q) .

Then R♭(q) = |Vr/s(q)|.
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To prove this theorem, we will need the following lemma. For any rational number r/s,
let Hr/s denote the following quiver (note that the orientation of the edges is opposite to
that of G♭

r/s).

• • • • • • • • • • • • • • • • ••
a1 − 1 a2 a3 a(2n−1)

a2n − 1

Lemma A.4. Consider any rational number r/s ∈ (1,∞). Let |Vr/s| = γ0 + γ1q + ...+
γN−1q

N−1 + γNq
N . Then for all i ∈ N, γi = Ci(Hr/s).

Lemma A.4 is an easy corollary of [MGO20, Proposition A.3], since the sequence of
coefficients of the normalised Jones polynomial Jr/s(q) in their paper is just the reverse of
the sequence of coefficients of the Jones polynomial Vr/s, and the number of i-ideals of
Hr/s is equal to the number of (N − i)-ideals of Hr/s with opposite orientation.
Proof of Theorem A.3. Let [a1, ..., a2n] be the continued fraction expansion of r/s. Let
R♭(q)/S♭(q) be the left q-deformed rational associated to [a2n, ..., a1]. By Corollary A.2,
R♭(q) counts the number of ideals in Hr/s with its orientation reversed. It is easy to check
that the number of k-ideals in an n-vertex quiver G equals the number of (n− k)-ideals in
G with its orientation reversed. Thus, by Lemma A.4, the sequence of coefficients of R♭(q)
is equal to the reverse of the sequence of coefficients of |Vr/s(q)|. So it is sufficient to show
that the sequence of coefficients of R♭(q) is the reverse of the sequence of coefficients of
R♭(q).

By Theorem 3.8, we have that
R♭(q) = homq(σ−a1

1 σa2
2 ...σ

−a2n−1
1 σa2n

2 P1, P2),
and that

R♭(q) = homq(σ−a2n
1 σ

a2n−1
2 ...σ−a2

1 σa1
2 P1, P2)

= homq(P1, σ
−a1
2 σa2

1 ...σ
−a2n−1
2 σa2n

1 P2)
= homq(P2, σ

−a1
1 σa2

2 ...σ
−a2n−1
1 σa2n

2 P1).
Let

X = σ−a1
1 σa2

2 ...σ
−a2n−1
1 σa2n

2 P1.

By the hom-values lemma (Lemma 3.13), we know that
homq(P2, X) = (q−2 − q−1) occq(P1, X) + q−1 occq(P2, X),

and an analogous result for homq(· , P2) gives that
homq(X,P2) = (1 − q−1) occq−1(P1, X) + q−1 occq−1(P2, X).

Thus, the sequence of coefficients of homq(X,P2) is the reverse of the sequence of coefficients
of homq(P2, X), completing the proof. □

Appendix B. Bridgeland stability conditions and Harder–Narasimhan
automata

B.1. Background on Bridgeland stability conditions. We assume the reader is
familiar with the theory of Bridgeland stability conditions [Bri07]. To briefly recall, a
stability condition on a triangulated category is specified as τ = (Pτ , Zτ ), where Pτ

is a slicing and Zτ is a compatible central charge. An object of the category is called
τ -semistable if it belongs to one of the full (abelian) subcategories Pτ (ϕ) for some ϕ ∈ R.
In this case, the number ϕ is called the phase of that semistable object. An object is
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called τ -stable if it is semistable (of some phase ϕ), and moreover if it is simple in the
abelian category Pτ (ϕ).

Recall also that every object of the category has a unique Harder–Narasimhan filtration
with respect to τ .

Definition B.1. Fix a stability condition τ on a triangulated category. Let X be any
object of the category. The τ -Harder–Narasimhan filtration of X is the unique filtration

0 X1 X2 · · · Xn = X

A1 A2 A3 · · · An

with the following properties.
(1) Each filtration factor Ai is semistable of some phase ϕi, and
(2) The numbers ϕi appear in decreasing order: ϕ1 > ϕ2 · · · > ϕn.

Let T denote an arbitrary triangulated category. Recall that for any subset I ⊂ R,
we define Pτ (I) to be the full subcategory of T consisting of objects whose Harder–
Narasimhan filtration factors have phases in I. The subcategory Pτ ([0, 1)) corresponding
to the half-open interval [0, 1) ⊂ R is a full abelian subcategory of T , which is the heart
of a bounded t-structure on T (see [Bri07, Section 3]).

Let Στ denote the set of indecomposable semistable objects of T that lie in Pτ ([0, 1)).
Then every indecomposable semistable object lies in Στ up to an integer shift. We can
count the (graded) multiplicity of any object of T in a given object of Στ , as follows.

Definition B.2. Fix some q > 0. The τ -Harder–Narasimhan multiplicity vector (or
simply the HN multiplicity vector) of a semistable object A ∈ T is an element of Z[q±]Στ ,
defined as follows. Let k be such that A ∈ Pτ ([k, k + 1)). For any B ∈ Στ , let nB be the
number of indecomposable summands of A that are isomorphic to B. Then the coordinate
of the HN multiplicity vector of A at B ∈ Στ is nBqk.

The τ -Harder–Narasimhan multiplicity vector of a general object of T is defined as
the sum of the τ -Harder–Narasimhan multiplicity vectors of its τ -Harder–Narasimhan
filtration factors.

Next we introduce a graded version of Harder–Narasimhan mass (see [DHKK14, Section
4.5], [Ike20, Section 3]).

Definition B.3. Let τ be a stability condition on a triangulated category T . Let q be a
fixed positive real number. Let X be an object of T and consider its Harder–Narasimhan
filtration:

0 X1 X2 · · · Xn = X.

A1 A2 A3 · · · An

Let ϕi denote the phase of the semistable object Ai. The q-Harder–Narasimhan mass, or
q-mass of the object X is defined to be

mq,τ (X) =
k∑
i=1

qϕi |Zτ (Ai)|.

Note that for q = 1, the q-Harder–Narasimhan mass is simply the classical Harder–
Narasimhan mass as defined in [Bri07, Section 5]. The q-mass function is due to [DHKK14,
Section 4.4].
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Finally, we denote the space of stability conditions on a triangulated category T by
Stab(T ). There is a natural C-action on Stab(T ) defined as follows.

For z = a+ iπb ∈ C and a stability condition τ = (Pτ , Zτ ), define zτ = (Pzτ , Zzτ ) by
Pzτ (ϕ) = Pτ (ϕ− b), Zzτ (X) := ezZτ (X).

So for any X ∈ T , the action of z = a + iπb rotates the vector Z(X) by the angle πb,
scales it by the quantity ea, and simultaneously shifts the slicing by the quantity b. We
will always consider the space Stab(T )/C, which is the space of stability conditions up to
this natural C action.

B.2. Harder–Narasimhan and mass automata. Fix throughout this section a stability
condition τ on T . Recall that Στ is the set of indecomposable τ -semistable objects of
T that lie in Pτ ([0, 1)). For any X ∈ Ob T , set HNτ (X) ∈ Z[q±]Στ to be the τ -HN
multiplicity vector of X. Suppose also that a group G acts on T .

In this section we define Harder–Narasimhan automata on T . Our definition is just a
graded version of the one from [BDL20, Section 3], but we recall the key elements here.
We begin with some notation.

Let Θ be an arbitrary quiver. Let Θ0 and Θ1 denote the sets of vertices and edges of
Θ respectively. Given α ∈ Θ1, we say that s(α) ∈ Θ0 is its source, and t(α) ∈ Θ0 is its
target.

A G-labelling of Θ is a function Θ1 → G. Then every path (finite sequence of composable
edges) in Θ automatically acquires a label, namely the product of the corresponding group
elements in reverse order.

A Θ-set S is a representation of Θ in the category of sets. More precisely, it is specified
by a collection of sets {Sv | v ∈ Θ0}, together with edge functions {fα : Ss(α) → St(α) |
α ∈ Θ1}.

Let A be any ring. A Θ-representation M of A-modules consists (as usual) of A-modules
{Mv | v ∈ Θ0}, and A-linear maps {fα : Ms(α) → Mt(α) | α ∈ Θ1}. Any Θ-representation
is also a Θ-set.

A morphism of Θ-sets (resp. Θ-representations) consists of maps between the sets (resp.
module maps between the modules) at each vertex, so that the square determined by
every edge commutes.

A G-set S, together with a G-labelling on ℓ : Θ1 → G, naturally produces a Θ-set, as
follows. We declare each Sv to be S for every v ∈ Θ0, and each fα : S → S to be the action
of ℓ(α) on S. In particular, Ob T is a Θ-set, and we denote this as Ob T . Similarly, any
G-representation, together with a G-labelling of Θ, naturally produces a Θ-representation.

Definition B.4. Fix some q > 0. A τ -HN automaton for the G-action on T consists of
the following data.

(1) A G-labelled quiver Θ (and hence the Θ-set Ob T ).
(2) A Θ-subset S ⊂ Ob T .
(3) A Θ-representation M of Z[q±]-modules.
(4) A morphism i : S → M .
(5) A Z[q±]-linear map hv : Mv → Z[q±]Στ for every v ∈ Θ0.

This data is required to satisfy
HNτ (s) = hv(iv(s))

for every v ∈ Θ0 and every s ∈ S = Sv.

Example B.5. We illustrate the above definition with the following (somewhat trivial)
example. Let T be any triangulated category, and fix a stability condition τ on it. Let G
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be the group Z, generated by the triangulated shift (−)[1]. Then an example of an HN
automaton for this setup is given by the following data.

(1) An infinite Z-labelled quiver Θ.

· · · -1 0 1 · · ·
[1] [1]

[−1]

[1]

[−1]

[1]

[−1] [−1]

(2) The following Θ-subset S ⊂ Ob T .

· · · Pτ ([−1, 0)) Pτ ([0, 1)) Pτ ([1, 2)) · · ·

[1] [1]

[−1]

[1]

[−1]

[1]

[−1] [−1]

(3) The following Θ-representation M .

· · · Z[q±]Στ Z[q±]Στ Z[q±]Στ · · ·

q q

q−1

q

q−1

q

q−1 q−1

(4) The morphism i : S → M is as follows. For any j ∈ Z, the map ij : Sj → Mj is
defined as

ij(X) = HNτ (X).

With this definition, i is Θ-equivariant (i.e., a morphism) because

HNτ (X[1]) = q · HNτ (X).

(5) Finally, for each j ∈ Z, the map hj : Mj → Z[q±]Στ is just the identity map. The
compatibility condition

HNτ (X) = hj(ij(X))

is obvious.

Remark B.6. The example above merely serves to illustrate the definition and does not
compute anything interesting. However, appropriately engineered Harder–Narasimhan
automata can be extremely useful for calculations, particularly for results about dynamics
of autoequivalences in the category. An example of a computationally useful HN automaton
is described in Section 3.1 of this paper. Other examples can be found in [BDL20].

We also have the analogue of a mass automaton, as described in [BDL20, Section 3].

Definition B.7. Let q be a fixed positive real number. A τ -mass automaton is analogous
to a τ -HN automaton, with the definition modified as follows. The maps hv : Mv → Z[q±]Στ

are replaced by linear maps mv : Mv → R, satisfying

mq,τ (s) = mv(iv(s)).

In particular, given an HN automaton for a stability condition τ and a fixed q > 0, we
can produce a τ -mass automaton by composing the HN vector with the q-mass function.
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