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Abstract. We propose compactifications of the moduli space of Bridgeland stability

conditions of a triangulated category. Our construction arises from a viewing a stabil-

ity condition as a metric on the underlying category and is inspired by the Thurston
compactification of the Teichmüller space of hyperbolic metrics on a surface. The key

ingredient in the construction are maps from the stability manifold to an infinite projec-
tive space. We prove that, under suitable hypotheses, these maps are injective and their

image has a compact closure. We identify a family of points in the boundary that are

categorical analogous to the intersection functionals in Teichmüller theory.
We study in detail the geometry of the resulting compactification for the 2-Calabi–

Yau categories of quivers, and fully work out the cases of the A2 and Â1 quivers. To do

so, we carefully examine the dynamics of Harder–Narasimhan multiplicities under auto-

equivalences of the category. We introduce a finite automaton to study this dynamics

and employ it in our analysis of the A2 and Â1 categories.

1. Introduction

The space of Bridgeland stability conditions has emerged as an important invariant of
triangulated categories, evidenced by its prominent role in homological algebra, algebraic
geometry, mirror symmetry, representation theory, and mathematical physics. This paper
takes the point of view of studying stability conditions through the metrics they define on
the underlying triangulated category [22]. This perspective infuses the study of stability
conditions with ideas from metric geometry, opening up new possibilities inspired by the
study of moduli spaces of metrics elsewhere in mathematics.

In recent years, a significant body of work has established connections between metric ge-
ometry and homological algebra, particularly by relating Teichmüller theory and Bridgeland
stability [9,10,11,13,16,22,30,32]. A particularly promising prospect of this connection is a
theory of dynamics in triangulated categories parallel to the theory of dynamics in surface
geometry. To further develop this subject, we must consider not only spaces of Bridgeland
stability conditions but also their modular compactifications.

In this paper, we propose a family of such compactifications, inspired by Thurston’s
compactification of Teichmüller space. The first part of the paper establishes general results
about this construction by studying a stability condition via its associated family of metrics.
The highlights of this part of the paper are Theorems 3.9 and 4.3. Theorem 3.9 shows that
the stable objects of a stability condition (though not necessarily the central charge) are
determined by any one of its associated metrics. Theorem 4.3 shows that in fact the entire
stability condition (including the central charge) is determined by any pair of its associated
metrics.

The second part of the paper focuses on a family of important categories, namely the 2-
Calabi–Yau categories associated to quivers. In this case, a stability condition is completely
determined by any one of its associated metrics. In Sections 7 and 8 respectively, we work out
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our proposed compactification explicitly for two small but highly non-trivial cases, namely

the A2 and Â1 quivers. To do so, we introduce a number of general ideas, including the use
of automata to describe the evolution of Harder–Narasimhan filtrations (Section 1.4 and
Section 5) and the notion of rectifiable filtrations (Appendix A).

1.1. The construction. Thurston’s compactification of Teichmüller space proceeds by em-
bedding it in an infinite projective space, and then taking its closure. To do this, one first
fixes a suitable collection of curves S. The embedding sends a point of Teichmüller space,
represented by a metric µ, to the real-valued function on S defined by the length with
respect to µ.

In our categorical analogue of Thurston’s construction, Bridgeland stability conditions
provide the metrics. The analogue of the set of curves tends to be flexible—the best choice
may vary for different categories. In the examples studied in the second part of the paper, we
take S to be the set of spherical objects. Indeed, as described by Khovanov and Seidel [25],
in a 2-Calabi–Yau category of type A there is a precise correspondence between spherical
objects and curves on the punctured disc. In greater generality, a reasonable choice for
“curves” may be the objects that are stable for some stability condition. The categorical
analogue of the length of a curve with respect to a metric is the mass of such an object with
respect to a stability condition, whose definition we now recall.

Let C be a triangulated category. Given a stability condition τ on C with central charge
Z, the mass of an object x is defined as

(1) mτ (x) =
∑
i

|Z(ai)|,

where the ai are the semistable Harder–Narasimhan factors of x. The notion of mass admits
a q-analogue for any positive real number q > 0. The q-mass of an object x is defined as

mq,τ (x) =
∑
i

qϕ(ai)|Z(ai)|,

were ϕ(ai) is the phase of the semistable object ai.
The q-mass satisfies the triangle inequality [22]. That is, in a distinguished triangle

x → y → z
+1−−→, we have the inequality mq,τ (y) ≤ mq,τ (x) + mq,τ (z). It easily follows

that the function that sends a morphism f to the non-negative real number mq,τ (Cone(f))
defines a translation invariant metric on the category in the sense of [27]. In our paper, all
the metrics on categories are of this kind. Thus, we sometimes refer to the function mq,τ as
a metric.

Let S be a subset of the set of objects of C. Denote by RS the space of functions from
S to R, endowed with the product topology. Let PS denote the quotient (RS \ {0})/R×.
Let Stab(C) be the space of stability conditions on C, and recall that it admits a standard
action of C. For each q, the association τ 7→ mq,τ defines a continuous map

mq : Stab(C)/C → PS.

Our proposed “Thurston compactification” of Stab(C)/C is the closure of the image.

1.2. The results. Recall the salient features of Thurston’s compactification of Teichmüller
space.

(1) The length function up to scaling determines the metric up to isotopy. That is, the
map taking a metric to its length function is injective. In fact, it is a homeomorphism
onto its image.
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(2) The closure of the image is a compact real manifold with boundary.
(3) The boundary contains a distinguished collection of functionals, namely the intersec-

tion functionals. This collection is in fact dense in the boundary. Finally, all points
of the boundary have a modular interpretation as projective measured foliations.

We now address each of these points in our categorical context. In the remarks below,
we have chosen S to be the set of objects x such that there is a stability condition in which
x is semi-stable. We remind the reader that the best choice for S may vary in applications.

1.2.1. Injectivity and homeomorphic embedding. The family of functions mq,τ determines
the stability condition τ ∈ Stab(C)/C. In fact, we prove in Theorem 4.3 that for any two
distinct positive real numbers q1, q2, the product map mq1 ×mq2 is injective. We conjecture
that a product of mass maps gives a homeomorphic embedding of Stab(C)/C.

We prove in Theorem 3.9 that for any single q, the function mq,τ determines the stable
objects of τ . On the other hand, we note that a single mq,τ may fail to determine the central
charge of τ . As a result, we cannot expect in general that a single mq gives an embedding
of the stability manifold (a phenomenon also observed in [26]).

Nevertheless, for 2-CY categories of quivers, we prove in Proposition 6.14 that for any q,

the map mq is injective. Moreover, in types A2 and Â1, we prove in Propositions 7.8 and 8.9
that q = 1 already gives a homeomorphic embedding. (The case of q ̸= 1 is handled in the
follow-up work [1] using similar techniques). Our key technical tool is Harder–Narasimhan
automata, which we briefly discuss in Section 1.4 and develop in Section 5.

1.2.2. Properties of the closure. We prove that the closure of the image of mq is compact in
great generality. Precisely, as long as the set S contains a classical generator of the category,
the closure of the image of mq is compact (Proposition 4.1). Categories that have a classical
generator include derived categories of coherent sheaves on a quasi-projective variety, and
the category of perfect complexes over a dg algebra.

For applications to dynamics, it is particularly important to understand when the com-
pactification is homeomorphic to a closed Euclidean ball, since in that case every autoe-
quivalence will act with a fixed point on the compactification. For the A2 2-Calabi–Yau
category, we prove that the closure of m1 is homeomorphic to a closed Euclidean ball
(Proposition 7.23).

We expect our statement about A2 to generalise to other important cases, such as 2CY
quiver categories and derived categories of K3 surfaces.

1.2.3. Functionals on the boundary. Assume that C is k-linear and of finite type. Let a ∈ C
be a spherical object. Associated to a, we have a function on S defined by

x 7→ dimHom•(a, x) =
∑
i

dimHomi(a, x).

In Definition 4.8, we define a close analogue of this function which also incorporates the q,
denoted by homq(a). This is a categorical analogue of the intersection functionals of curves.

We prove in Corollary 4.13 that, in direct analogy with geometry, the function homq(a)
represents a boundary point in our compactification.

Whether or not the hom-functionals are dense in the boundary is a subtle question, whose
answer depends on q. In the case of the 2-CY category of type A2 and q = 1, the answer is
“yes”—they are essentially the rational numbers Q∪{∞} on the boundary circle R∪{∞}.
For the same category and q ̸= 1, however, they are not dense in the boundary, but a fractal
subset, which may be identified with the left q-rational numbers of [1].
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Stab(C)/C

P1

P2 → P1

P2

P1 → P2

P2 → P1 → P1[1]P2 → P2 → P1[1]

Figure 1. The compactification of Stab(C)/C. The spherical objects ap-
pear as a dense subset of the boundary.

Giving a moduli interpretation to the boundary points, as a kind of categorical analogue
of measured foliations, remains an excellent outstanding problem for future work.

1.3. Departures from Teichmüller theory. The categorical picture, although motivated
by Thurston’s geometric picture, also differs from it interesting ways.

While a stability condition defines a family of metrics on the underlying triangulated
category, those metrics are not “hyperbolic” in a meaningful sense. They behave more like
flat metrics, which is consonant with [10], where the authors establish a precise relationship
between quadratic differentials and stability condition in certain 3-CY settings.

In the 2-CY category of type An, the stability manifold and the Teichmüller space of
a disk with (n + 1) punctures are both universal covers of the complement of the hyper-
plane arrangement of type An. For n > 2, however, we believe that no homeomorphism
between them extends to a homeomorphism between the Thurston compactification and any
of our compactifications. In Thurston’s construction, the Teichmüller space maps homeo-
morphically onto the interior of the Thurston compactification. In our case, on the other
hand, we see that for n > 2, the interior of our compactification contains additional points
which are not themselves stability conditions. (Some of them can be identified with de-
generate stability conditions constructed by Bolognese [4].) It seems likely that a closer
Teichmüller-theoretic analogue of our construction is a compactification of the moduli space
of flat metrics on a surface, constructed, for example, by Duchin, Leininger, and Rafi [12].
It would be interesting to relate our construction and theirs.

Our theory has a natural q-analogue, so we obtain a family of compactifications of the
space of stability conditions, depending on a positive real parameter q. This should not
be confused with existing literature on quantizations of Teichmüller space (e.g. [15]), which
pertain to quantizing algebras of functions.

1.4. Harder–Narasimhan automata. After establishing the general results, we focus on
the 2-CY categories CΓ associated to finite connected quivers Γ. The Artin–Tits braid group
BΓ acts (conjecturally faithfully) on the 2-CY category CΓ. To understand the compact-
ification of the stability manifold, we heavily use this action. Along the way, we develop
techniques that may be broadly applicable to the study of stability conditions in the presence
of a group action.
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The key question we address is how the HN filtration of an object transforms under an
auto-equivalence. To make this precise, fix a stability condition and let Σ be the set of
indecomposable semi-stable objects up to shift. For an object x, let HN(x) ∈ ZΣ be its
HN multiplicity vector—the function that assigns to s ∈ Σ the number of times it appears
(up to shift) in the HN filtration of x. Suppose a group G acts on our category by auto-
equivalences. This action may not induce a compatible linear action on ZΣ. Nevertheless, in

many situations—including the A2 and Â1 cases studied in the latter part of the paper—it
induces a “piecewise linear” action. Roughly speaking, this means the following. We can
partition the objects of the category into subsets, called states. For each ordered pair of
states, there are certain allowable elements of G that send all objects of the first state into
objects of the second state and induce linear transformations on their HN multiplicities.
We formalise this structure as a decorated finite automaton called an HN automaton (see
Section 5).

An HN automaton allows us to express the evolution of HN multiplicities as a linear map.
This can lead to a direct method to compute the categorical entropy of an autoequivalence
(see [17]).

We construct HN automata in type A2 and Â1. These automata recognize all braids,
meaning that every braid can be represented by a sequence of allowable arrows in the
decorated graph. We use these automata as a tool to prove all of the basic properties of
our compactifications. As an additional application, we recover a theorem of Rouquier–
Zimmermann [28, Proposition 4.8] in the type A2 case and prove a new analogue of their

theorem in the type Â1 case. We anticipate automata to play an important role in the study
of group actions on triangulated categories.

1.5. Organisation. In Section 2, we recall some background on Bridgeland stability con-
ditions, spherical objects and spherical twists. In Section 3, we prove foundational results
about the mass functions associated to stability conditions, including the fact that the mass
function determines the stable objects (Theorem 3.9). In Section 4, we use the mass to define
a map from the stability manifold to a projective space, and establish its basic properties.
These include the compactness of the closure of the image (Proposition 4.1), injectivity
for a pair of masses (Theorem 4.3), and the presence of hom functionals in the closure
(Corollary 4.13). In Section 5, we introduce the notion of Harder–Narasimhan automata.

So far, all the discussion applies generally. From Section 6 onwards, we focus on specific
categories, namely the 2-Calabi–Yau categories of quivers. Section 6 begins with the defini-
tion and basic properties of the categories, and proceeds to prove the injectivity of a single
mass map (Proposition 6.14). Section 7 contains the A2 case in detail. Using a suitable HN
automaton, we prove that the mass map is a homeomorphic embedding (Proposition 7.8;
the boundary is a circle (Proposition 7.16 and Proposition 7.21); and construct an explicit
homeomorphism from the closure to a 2-disk (Proposition 7.23). Along the way, we reprove a
result of Rouquier–Zimmermann [28, Proposition 4.8]. Section 8 contains analogous results

for the Â1 case, including a new analogue of Rouquier–Zimmermann’s result.
The paper has two appendices. They contain technical results, which may have broader

use. Appendix A addresses the question of when a filtration in a triangulated category can
be re-arranged to obtain the Harder–Narasimhan filtration. Appendix B studies homological
properties of self-extensions of a spherical object.
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multiple drafts of this paper, finding errors, and suggesting improvements. We thank Tom
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2. Background

2.1. Stability conditions. We assume familiarity with the theory of Bridgeland stability
conditions (see [8]), but we recall the basic definitions. Let C be a triangulated category. A
stability condition τ on C is specified by two compatible structures (P, Z):

(1) the slicing P consists of additive subcategories P(ϕ) for each real number ϕ;
(2) the central charge Z is a homomorphism of additive groups from the Grothendieck

group K(C) to the complex numbers C.

The slicing and the central charge satisfy the following conditions:

(1) P(ϕ+ 1) = P(ϕ)[1];
(2) if a ∈ P(ϕ) and b ∈ P(ψ) with ϕ > ψ, then Hom(a, b) = 0;
(3) for every nonzero object x ∈ C, there exists a sequence of morphisms

0 = x0 → x1 → · · · → xn = x

such that if we define ai so that each triangle in

0 = x0 x1 x2 . . . xn−1 xn = x,

a1 a2 . . . an
+1 +1 +1

is exact, then ai ∈ P(ϕi) and ϕ1 > · · · > ϕn;
(4) for every non-zero a ∈ P(ϕ), there is some positive real number r such that

Z([a]) = r · eiπϕ.

The additive category P(ϕ) turns out to be abelian. Its objects are called semistable of
phase ϕ.

We call a sequence of maps x0 → · · · → xn = x a filtration of x. For each i, let ai be

such that xi−1 → xi → ai
+1−−→ is exact. We then say that the objects ai are factors of the

filtration.
For a morphism f : xi−1 → xi, we use Cone(f) to denote any object that fits into a

distinguished triangle xi−1
f−→ xi → Cone(f)

+1−−→. Such an object is unique up to a possibly
non-unique isomorphism. We only use this notation in contexts where the ambiguity of the
isomorphism is irrelevant.

The specific filtration described in (3) is called the Harder–Narasimhan (HN) filtration
of x. Its factors are called HN factors and their phases are called HN phases. The HN
filtration is unique up to isomorphisms (see, e.g. [8, §3]). Denote by ⌈x⌉ (resp. ⌊x⌋) the HN
factor of x of highest (resp. lowest) phase.

Fix a stability condition τ = (P, Z) on C. We recall from [8, Section 3] the induced
truncation structure on C. This structure depends on the slicing, but brevity, the notation
hides this dependence. Let I ⊂ R be an interval. Denote by CI ⊂ C the full subcategory
consisting of objects whose HN phases lie in I. The notation C≥α means C[α,∞), and likewise
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for C<α and C≥α and C>α. The pair of categories C>α and C≤α+1 define a t-structure on C
with the heart C(α,α+1]. As a result, we have a truncation functor

tr>α : C → C>α,

right adjoint to the inclusion C≤α → C [3, 1.3]. We abbreviate tr>α x to x>α. We have
similar functors tr<α and tr≥α, and tr≤α, and the corresponding notation x<α and x≥β and
x≤α. For an interval I = [α, β], we define trI as

trI = tr≥α ◦ tr≤β = tr≤β ◦ tr≥α,

and set xI = trI x. We have analogous functors and notation for other kinds of intervals,
namely (α, β), (α, β], and [α, β).

Let Stab(C) be the set of all stability conditions satisfying an additional condition called
local finiteness [8, Definition 5.7]. The main result of [8] states that each connected compo-
nent of Σ ⊂ Stab(C) is a complex manifold, and the forgetful map

Stab(C) ∋ (P, Z) 7→ Z ∈ Hom(K(C),C)

is a local homeomorphism to a linear subspace V (Σ).
The complex numbers C act on Stab(C) as follows. Say τ = (P, Z) and ω = a+ iπb, then

(ω · P)(ϕ) = P(ϕ− b) and ω · Z = eωZ.

The action of C on Stab(C) lifts the action of C∗ on Hom(K(C),C) by scaling. It follows
that the induced forgetful map

Stab(C)/C → Hom(K(C),C)/C∗

maps each connected component Σ/C locally homeomorphically to V (Σ)/C∗.
Observe that the purely imaginary numbers iR ⊂ C simply shift the slicing and rotate

the central charge. We call such transformations translations.

2.2. Spherical objects and twists. Let k be a field and C a k-linear triangulated category.
Assume that C is of finite type, that is, for all objects x, y of C, the vector space

Hom•(x, y) =
⊕
n

Hom(x, y[n])

is a finite-dimensional k-vector space.
We recall the notion of a spherical object introduced in [29, Definition 2.9] (see also [19,

Chapter 8]). An object x of C is said to have a Serre dual if the functor Hom•(x,−) is
representable. If x has a Serre dual, the representing object Sx is unique up to a unique
isomorphism, and there are functorial isomorphisms

Hom•(x, y) ∼= Hom•(y, Sx)∨.

A d-Calabi–Yau object is an object x such that its shift x[d] is its Serre dual. A d-spherical
object is a d-Calabi–Yau object x whose endomorphism algebra is isomorphic to the coho-
mology algebra of the d-sphere:

Hom•(x, x) ∼= H•(Sd,k).

Note that this algebra is simply k[t]/t2, where t has degree d. We denote by loopx an
unspecified homogeneous generator of degree d of Hom•(x, x).

If x is a spherical object and y is any object, then there is a perfect pairing

(2) Homi(x, y)×Homd−i(y, x) → Homd(x, x) ∼= k,

induced by composition ( [24, Proposition 2.2]).
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If every object in the category C is d-Calabi–Yau (for the same d), then the category C
is said to be a d-Calabi–Yau category. Thus, if C is a d-Calabi–Yau category, then for any
x, y ∈ C, there exist functorial isomorphisms

Homi(x, y) ∼= Homd−i(y, x)∨.

Moreover, it follows that if x is an indecomposable object in a d-Calabi–Yau category such
that the k-vector space Hom•(x, x) is two-dimensional, then x is automatically a d-spherical
object of C.

There is also a notion of a strongly d-Calabi–Yau category, in which the pairing corre-
sponding to the functorial isomorphism (2) is required to be anti-symmetric (see [24]). The
categories we study in the later part of the paper are strongly d-Calabi–Yau.

Assume that C admits a dg-enhancement. This is true, for instance, if C is algebraic
in the sense of [23] or enhanced in the sense of [6], and will hold in all the examples we
consider. Fix a dg-enhancement on C, which guarantees that C has functorial cones. Then
any spherical object x gives rise to an autoequivalence σx : C → C called the spherical twist
in x (see [29, Section 2.2]). For y ∈ C, the object σx(y) is defined to be the cone of the
evaluation map

x⊗Hom•(x, y)
ev−→ y.

The twist σx and its inverse σ−1
x give rise to distinguished triangles

Hom•(x, y)⊗ x
ev−→ y → σx(y)

+1−−→ and σ−1
x y → y

coev−−−→ Hom•(y, x)∗ ⊗ x
+1−−→ .

The evaluation map ev is self-explanatory. The co-evaluation map coev is the adjoint to the
evaluation map

Hom•(y, x)⊗ y → x.

3. The mass associated to a stability condition

Let C be a triangulated category and let τ be a stability condition on C. Fix a positive
real number q; for us the most important case is q = 1.

Let x be an object of C. Let

0 = x0 x1 x2 . . . xn−1 xn = x,

a1 a2 . . . an
+1 +1 +1

be the HN filtration of x, where ai is semi-stable of phase ϕi. We define the (q, τ)-mass of
x by the formula

mq,τ (x) =
∑
i

qϕi |Z(ai)|.

We take the mass of the zero object to be zero.
A key property of the mass is that it satisfies a triangle inequality.

Proposition 3.1 (Triangle inequality). Let x→ y → z
+1−−→ be an exact triangle. Then

mq,τ (y) ≤ mq,τ (x) +mq,τ (z).

Proof. See [22, Theorem 3.8]. □

We devote Appendix A to understanding more about when equality holds in Proposi-
tion 3.1. The following is a particularly simple instance.
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Proposition 3.2. Let x → y → z
+1−−→ be an exact triangle. Assume that the lowest HN

phase of x is greater than or equal to the highest HN phase of z. Then

mq,τ (y) = mq,τ (x) +mq,τ (z).

Proof. Using the exact triangle, we can splice together filtrations of x and z to get a filtration
of y, as follows. Suppose we are given 0 = x0 → · · · → xn = x with factors a1, . . . , an and
0 = z0 · · · → zm = z with factors b1, . . . , bm. Set ym+n = y, and recall that zm = z.
For each i = m, . . . , 1, define yi+n−1 by descending induction so that it fits into a map of
distinguished triangles as follows:

yn+i−1 zi−1 x[1]

yn+i zi x[1] .

+1

=

+1

By the octahedral axiom, we see that for each i = m, . . . , 1, there is a distinguished triangle

yn+i−1 → yn+i → bi
+1−−→ .

Note that yn = x. For each i = n, . . . , 1, set yi−1 = xi−1. Then for i = n, . . . , 1, there is a
distinguished triangle

yi−1 → yi → ai
+1−−→ .

Therefore we have constructed a filtration

(3) 0 = y0 → y1 → · · · → ym+n = y

with factors a1, . . . , an, b1, . . . , bm.
Suppose the filtrations (xi) and (yj) are the HN filtrations of x and y. By hypothesis,

we have ϕ(an) ≥ ϕ(b1). If ϕ(an) > ϕ(b1), then (3) is the HN filtration of y, and hence

(4) mq,τ (y) =
∑

mq,τ (ai) +
∑

mq,τ (bj) = mq,τ (x) +mq,τ (z).

If ϕ(an) = ϕ(b1), then shorten the filtration (3) by dropping the yn term so that in the
middle it looks like

· · · → yn−1 → yn+1 → · · · .

Let c complete the triangle yn−1 → yn+1 → c
+1−−→. By the octahedral axiom, we have an

exact triangle an → c → b1
+1−−→. Since an and b1 are semistable of the same phase, so is c.

As a result, the shortened (3) is the HN filtration of y. Furthermore, we have

mq,τ (c) = mq,τ (an) +mq,τ (b1),

and hence (4) holds. □

The following key proposition shows that there are no unexpected mass-preserving de-
compositions of semi-stable objects.

Proposition 3.3. Let y be a τ -semi-stable object of phase ϕ. Let

x→ y → z
+1−−→

be an exact triangle such that

mq,τ (y) = mq,τ (x) +mq,τ (z).

Then x and z are also semi-stable of the same phase ϕ.
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The proof follows the same ideas as the proof of the triangle inequality in [22]. It uses
the following q-analogue of the triangle inequality for vectors, which is [22, Lemma 3.6].

Lemma 3.4. Let a, b, c be complex numbers of the form

a = rae
iπϕa , b = rbe

iπϕb , c = rce
iπϕc ,

where ra, rb, rc are positive real numbers and ϕa, ϕb, ϕc are real numbers lying in an interval
of length 1. Suppose b = a+ c. Then

raq
ϕa + rcq

ϕc ≥ rbq
ϕb

with equality if and only if ϕa = ϕb = ϕc.

Lemma 3.5. Let I be a half-open interval of length 1, and let x be an object in the I-heart
associated to τ . Write Z(x) = reiπϕ for ϕ ∈ I. Then

mq,τ (x) ≥ rqϕ,

with equality if and only if x is semi-stable of phase ϕ.

Proof. Apply Lemma 3.4 inductively to the central charges of the HN factors of x. □

Proof of Proposition 3.3. Abbreviatemq,τ bym and assume that both x and z are non-zero.
The statement is unaffected if we translate the slicing of τ . Translate so that y has phase 0.

We first show that z lies in the [0, 1)-heart associated to τ . Taking cohomology with
respect to the corresponding t-structure gives

0 → H−1(z) → H0(x) → H0(y) = y → H0(z) → H1(x) → 0.

Let s = coker(H−1(z) → H0(x)) and t = ker(H0(z) → H1(x)). Then we have the short
exact sequence

0 → s→ y → t→ 0.

By the triangle inequality (Proposition 3.1), we have

(5) m(y) ≤ m(s) +m(t).

The triangle inequality applied to the defining triangles of s and t gives

(6) m(s) ≤ m(H0(x)) + qm(H−1(z))

and

(7) m(t) ≤ m(H0(z)) + q−1m(H1(x)).

By adding (6) and (7), we get

m(s) +m(t) ≤ m(H0(x)) + q−1m(H1(x)) + qm(H−1(z)) +m(H0(z)).

By (5), the left hand side dominates m(y). For the right hand side, we use

(8) qm(H−1(z)) +m(H0(z)) ≤
∑
i

q−im(Hi(z)) = m(z),

and similarly for x. Thus, the right hand side is dominated by m(x) +m(z), which by the
hypothesis is also m(y). Hence, equalities must hold in (5), (6), (7), and (8). From (8), we
conclude that Hi(z) = 0 for all i ̸∈ {−1, 0}. In the exact sequence

0 → s→ y → t→ 0,

the object y is semi-stable of the lowest possible phase in the heart, namely 0. It follows
that s is also semi-stable of phase 0.
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Now consider the exact sequence

0 → H−1(z) → H0(x) → s→ 0.

Since s is semi-stable of the lowest phase in the heart, Proposition 3.2 implies that

m(H0(x)) = m(s) +m(H−1(z)).

On the other hand, we know that (6) is an equality, so

m(s) = m(H0(x)) + qm(H−1(z)).

The last two equations imply that H−1(z) = 0. That is, z lies in the [0, 1)-heart.
A parallel argument shows that x lies in the (−1, 0]-heart.
Write

Z(x) = rxe
iπϕx , Z(y) = ry, Z(z) = rze

iπϕz ,

where rx, ry, rz are positive real numbers, ϕx ∈ (−1, 0] and ϕz ∈ [0, 1). Lemma 3.5 says

(9) m(x) ≥ rxq
ϕx and m(z) ≥ rzq

ϕz

with equalities if and only if x and z are semi-stable. Since Z(y) = Z(x) + Z(z) lies on the
non-negative real axis, we must have

ϕz ≤ ϕx + 1.

Therefore, Lemma 3.4 gives

(10) rxq
ϕx + rzq

ϕz ≥ ry

with equality if and only if ϕx = ϕz = 0. Inequalities (9) and (10), together with the
hypothesis ry = m(y) = m(x) +m(z) imply that equalities must hold in (9) and (10) Thus,
x and z are semi-stable of phase 0. □

Corollary 3.6. Let y be a semi-stable object of phase ϕ. Let

0 = y0 → y1 → · · · → yn = y

be a filtration of y with factors ai = Cone(yi−1 → yi). Suppose that

mq,τ (y) =
∑
i

mq,τ (ai).

Then for all i, the object ai is semi-stable of phase ϕ.

Proof. Follows from Proposition 3.3 and induction on n. □

Corollary 3.7. Let y be a τ -stable object of phase ϕ. Let

0 = y0 → y1 → · · · → yn = y

be a filtration of y with factors ai = Cone(yi−1 → yi). Suppose that

mq,τ (y) =
∑
i

mq,τ (ai).

Then for all i except possibly one, we have ai = 0.

Proof. By Corollary 3.6, we conclude that all ai are τ semi-stable of the same phase ϕ. Since
y is stable, it is a simple object of abelian category of semi-stable objects of phase ϕ. Thus,
its Jordan–Holder filtration is of length 1. □
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Remark 3.8. The Harder–Narasimhan factors of an object x are semi-stable, but not neces-
sarily stable. But recall that the abelian category of semi-stable objects of a given phase is
of finite length [8, Definition 5.7]. As a result every semi-stable object has a finite Jorden–
Hölder filtration whose factors are stable of the same phase. By splicining together these
Jorden–Hölder filtrations, we obtain a filtration of x with stable factors. Note that the mass
of x is the sum of the masses of the (stable) factors in this filtration.

Theorem 3.9. Let τ and τ ′ be two stability conditions such that for each object x of C, we
have mq,τ (x) = mq,τ ′(x). Then an object of C is τ -stable if and only if it is τ ′-stable.

Proof. Let x be a τ -stable object. As described in Remark 3.8, consider a filtration of x
with τ ′-stable factors y1, . . . , yk such that

mq,τ ′(x) =

k∑
i=1

mq,τ ′(yi).

Since mq,τ (x) = mq,τ ′(x) and mq,τ (yi) = mq,τ ′(yi) for every i, we have:

mq,τ (x) =

k∑
i=1

mq,τ (yi).

Since x is τ -stable, we conclude by Corollary 3.7 that all but one of the objects yi are zero.
It follows that x is τ ′-stable. □

It is useful to record a generalisation Theorem 3.9 that allows us to restrict the objects
x. Let S be a set of objects of C satisfying the following conditions.

(1) If x ∈ S and x ∼= y, then y ∈ S.
(2) If x ∈ S and τ is a stability condition, then the τ -stable HN factors of x also lie in

S.

Recall that the τ -stable HN factors of x are the subquotients in Jorden–Hölder filtrations
of the τ -semistable factors of x. Examples of such S include:

(a) the union over τ of τ -stable objects,
(b) if C is 2-Calabi–Yau, the set of spherical objects.

In the second example, the condition (2) holds thanks to the Mukai lemma [20, Lemma 2.2].

Corollary 3.10. Let S be a set of objects of C satisfying the conditions (1) and (2). Let
τ and τ ′ be two stability conditions such that for all x ∈ S, we have mq,τ (x) = mq,τ ′(x).
Then an object x ∈ S is τ -stable if and only if it is τ ′-stable.

Proof. The proof of Theorem 3.9 goes through verbatim. □

Proposition 3.11. Let τ and τ ′ be stability conditions. Suppose that q1 and q2 are two
distinct positive real numbers such that for each object x we have

mq1,τ (x) = mq1,τ ′(x) and

mq2,τ (x) = mq2,τ ′(x).

Then τ = τ ′.
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Proof. Let x be any stable object of τ . By Theorem 3.9, x is also a stable object of τ ′. Let
ϕ be the τ -phase of x and ϕ′ be the τ ′-phase of x. We have

qϕ1 |Zτ (x)| = qϕ
′

1 |Zτ ′(x)| and

qϕ2 |Zτ (x)| = qϕ
′

2 |Zτ ′(x)|.

Noting that both |Zτ (x)| and |Zτ ′(x)| are nonzero, we have (q1/q2)
ϕ = (q1/q2)

ϕ′
, which

gives ϕ = ϕ′ and hence |Zτ (x)| = |Zτ ′(x)|. We conclude that the phases and central charges
of x in both τ and τ ′ are equal. Since this holds for all stable objects x, we must have
τ = τ ′. □

4. The projective embedding and its boundary

Let C be a triangulated category and Stab(C) the space of stability conditions on C. Let S
be a non-empty set of non-zero objects of C. Let RS be the space of functions from S → R
with the product topology, and set

PS =
(
RS \ {0}

)
/scaling.

Fix a positive real number q.
Every stability condition τ gives a non-zero function

mq,τ : S → R

that sends x ∈ S to its τ -mass mq,τ (x) defined in Section 3. Changing τ to a translate by
the action of C only rescales the function above. As a result, we have a well-defined map

(11) mq : Stab(C)/C → PS,

which we call the q-mass map. If q = 1, we drop it from the notation. The choice of S is
flexible. In our applications, it will consist of all spherical objects.

The aim of this section is to prove some general properties of the mass map.

4.1. Pre-compactness. Recall that an object p ∈ C is called a (classical) generator if every
object y ∈ C is a direct summand of some object x ∈ C that admits a filtration

0 → x0 → · · · → xm = x,

whose factors are shifts of p.

Proposition 4.1 (Pre-compactness). Suppose the set S contains objects p1, . . . , pn such
that p = ⊕pi is a generator of C. Then the closure of the image of mq in PS is compact.

Proof. We first show that for every y ∈ C, there is some positive real number N(y) such
that for every stability condition τ , we have

(12) mq,τ (y) ≤ N(y)mq,τ (p).

To see this, take y ∈ C. Consider an object x ∈ C such that y is a direct summand of x,
and x has a filtration

0 = x0 → x1 → · · · → xm = x

whose factors are p[a0], . . . , p[am]. By the triangle inequality (Proposition 3.1), we have for
every stability condition τ that

mq,τ (x) ≤ (qa0 + · · ·+ qam)mq,τ (p).

Since y is a summand of x, we also havemq,τ (y) ≤ mq,τ (x). Taking, N(y) = (qa0+· · ·+qam),
we have the desired inequality (12).
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Note in particular by (12) that mq,τ (p) > 0. Let m̃q : Stab(C)/C → RS be the lift of mq

characterised by

m̃q,τ (p) =
∑
i

m̃q,τ (pi) = 1

for every τ ∈ Stab(C)/C. Let B̃ be the closure in RS of the image of m̃q. By (12), we see
that the image of m̃q lies in the compact set∏

y∈S

[0, N(y)].

Thus, B̃ is a closed subset of a compact set, and hence compact. Note that by continuity,

we have for all µ ∈ B̃ that
∑
µ(pi) = 1, and therefore B̃ ⊂ RS −0.

Let π : (RS −0) → PS be the projection. Since B̃ is compact, so is π(B̃). By construction,

mq(Stab(C)/C) is contained in the compact set π(B̃) ⊂ PS. Therefore, its closure is a closed
subset of a compact set, and hence compact. □

Corollary 4.2. Under the same hypotheses as Proposition 4.1, fix positive real numbers
q1, . . . , qn. Consider the map

mq1 × · · · ×mqn : Stab(C)/C → PS × · · · ×PS.

Then the closure of its image is compact.

Proof. Let m = mq1 × · · · ×mqn . Then the image of m is contained in the product of the
images of mqi . Hence, the closure of the image of m is contained in the product of their
closures, which is compact by Proposition 4.1. The result follows. □

4.2. Injectivity. The following proposition says that if S is sufficiently large, then two
mass maps together determine the stability condition up to translation.

Theorem 4.3. Assume that S contains all the stable objects in every stability condition on
C. Then for n ≥ 2, the map

m = mq1 × · · · ×mqn : Stab(C)/C → PS × · · · ×PS

is injective.

Proof. It is sufficient to show that m is injective for n = 2; it then follows for any n ≥ 2.
Let τ, τ ′ ∈ Stab(C), and suppose m(τ) = m(τ ′). By using the action of C on Stab(C), we

may replace τ ′ by a stability condition τ ′′ so that for all i = 1, 2, we have

mqi(τ) = mqi(τ
′′) ∈ RS .

Let x ∈ S be stable for τ . By the argument in the proof of Theorem 3.9, x is also stable
for τ ′′. Now, by the argument in the proof of Proposition 3.11, it follows that τ = τ ′′. Thus
τ and τ ′ agree up to the action of C. □

Remark 4.4. Suppose C is 2-Calabi–Yau and the spherical objects in C span its Grothendieck
group. Then Theorem 4.3 holds even if we replace S by its subset consisting only of spherical
objects. See Corollary 3.10.

Remark 4.5. In general, the mass map for a single q, namely

mq : Stab(C)/C → PS,

need not be injective. See [26, § 6.1] for an example, or consider the following example. For
simplicity, take q = 1. Consider the quiver 1 → 2 of type A2, and let C be the bounded
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derived category of finite-dimensional representations of this quiver. Let S1 and S2 be the
irreducible representations k → 0 and 0 → k respectively. Let E be the representation

k
1−→ k, which fits into the exact sequence

0 → S2 → E → S1 → 0.

Recall that any object of C is a direct sum of triangulated shifts of copies of S1, S2, and E.
Consider a stability condition in which S1 and S2 are stable objects of the standard heart,
such that ϕ(S1) < ϕ(S2). Due to this inequality, E is not semistable, and so

m(E) = m(S1) +m(S2).

Consider two stability conditions τ and τ ′ in which S1 and S2 are stable objects of the [0, 1)
heart, satisfying the following property:

Zτ (S1) = Zτ ′(S1) = 1, and

both Zτ (S2) and Zτ ′(S2) are complex numbers in the upper half plane such that

Zτ ′(S2) = eicZτ (S2)

for some small c > 0. That is, Zτ ′(S2) is a slight rotation of Zτ (S1). Then it is clear that τ
and τ ′ are not equal points of Stab(C)/C, whereas mτ = mτ ′ .

Remark 4.6. For specific categories C, we can prove stronger injectivity results. For example,
for the 2-CY categories CΓ associated to a connected graph Γ, we prove in Proposition 6.14
that the mass map for a single q is injective.

Remark 4.7. We would like the map m from Theorem 4.3 to be not only injective, but
also a homeomorphism onto its image. Since m is continuous and injective, what remains
to prove is that it maps open subsets of the domain to open subsets of the image. At
present we do not know how to prove this in general. However, in examples we find that
every stability condition τ has an open neighborhood U whose closure is compact and such
that m(U) is cut out by finitely many (strict) inequalities involving the masses of finitely
many objects in S. This implies that m is an open map, and hence a homeomorphism onto
the image. While we haven’t formulated a general statement regarding the origin of such
inequalities here, see Proposition 6.18 for a version written explicitly for 2-CY categories of
quivers. In particular, we use Proposition 6.18 to prove that a single mass map m = mq is

a homeomophism onto its image in types A2 and Â1 in Proposition 7.8 and Proposition 8.9
respectively.

4.3. Points in the boundary of the mass map. In this section, we obtain a family of
elements in PS in the closure of the image of the stability manifold. These are analogous
to the intersection functionals in Teichmüller theory, and arise as limits under successive
applications of a spherical twist.

We assume that the category C is k-linear of finite type with a fixed dg-enhancement.

Definition 4.8. Let a be a d-spherical object in C and let q > 0 be a fixed real number.
Let x be any object of C such that

Homi(x, x) = 0 if i < 0.

(1) If x is indecomposable, set

homq(a, x) =

{∑
i q

−i dim(Homi(a, x)) x ̸= a[j] for any j ∈ Z,

qj · |q−d − q−1| x ∼= a[j].
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(2) If x = ⊕iyi for indecomposable objects yi, set

homq(a, x) =
∑
i

homq(a, yi).

We should regard homq(x, y) as a categorical version of the minimal intersection number
between two curves. Then, in analogy with [14, Section 3.3]), we can regard the function
homq(a,−) : S → R as the intersection functional.

The following theorem shows that the quantity homq(a, x) governs the growth of the
τ -mass of an object under repeated applications of σa.

Theorem 4.9. Let τ be a stability condition on C. Let a be a τ -semi-stable d-spherical
object, and let x be an object that has no endomorphisms of negative degree. Let q > 0 and
set e = d− 1.

(1) If 0 < q ≤ 1, then

lim
n→∞

mq,τ (σ
n
ax)

q + q1−e + · · ·+ q1−(n−1)e
= mq,τ (a) · homq(a, x).

(2) If q ≥ 1, then

lim
n→∞

mq,τ (σ
−n
a x)

q1+e + q1+2e + · · ·+ q1+ne
= mq,τ (a) · homq(a, x).

In particular, if q = 1, then

(13) lim
n→±∞

mτ (σ
n
ax)

n
= mτ (a) · hom(a, x).

The rest of Section 4.3 is devoted to the proof of Theorem 4.9.
Recall that for a d-spherical object a, we have a perfect pairing

Homi(x, y)⊗Homd−i(y, x) → k,

which is obtained by the composition followed by a map

tr : Homd(x, x) → k.

The graded vector space Hom•(a, a) is two-dimensional, generated by the identity map ida
of degree zero, and a map loopa of degree d, which we choose so that tr loopa = 1.

Let x be any object. Then we have the distinguished triangle

Hom•(a, x)⊗ a
α−→ x→ σa(x)

+1−−→,

where α is the evaluation map. Likewise, we have the distinguished triangle

σ−1
a x→ x

β−→ Hom•(x, a)∗ ⊗ a
+1−−→,

where β is the co-evaluation map. The two triangles together give the filtration

(14) σ−1
a x→ x→ σax

with factors Hom•(x, a)∗ ⊗ a and Hom•(a, x)⊗ a[1]. Using that a is d-spherical, we identify

(15) Hom•(x, a)∗ = Hom•(a, x)[d].
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Lemma 4.10. In the setup above, suppose x does not contain any shift of a as a direct
summand. Consider the filtration

σ−1
a x→ x→ σax.

Then, with the identification as in (15), the connecting map

(16) Hom•(a, x)⊗ a[1] → Hom•(a, x)⊗ a[d+ 1]

is a shift of id⊗ loopa.

Proof. Shifted by −1, the connecting map is the composite

(17) Hom•(a, x)⊗ a
α−→ x

β−→ Hom•(x, a)∗ ⊗ a
γ−→ Hom•(a, x)[d]⊗ a,

where α is evaluation, β is co-evaluation, and γ is the duality isomorphism. By the definition
of evaluation and co-evaluation, β ◦ α is adjoint to the composite

Hom•(a, x)⊗Hom•(x, a)⊗ a→ Hom•(a, a)⊗ a→ a,

where the first map is composition and the second is evaluation. Since x does not have
any shift of a as a direct summand, no composition a[j] → x → a[j] can be the identity.
Therefore, the image of the composition map

(18) Hom•(a, x)⊗Hom•(x, a) → Hom•(a, a)

is the one-dimensional subspace spanned by loopa. Interpreting tr : Homi(a, a) → k as 0 on

the summands exept Homd(a, a), we can then write (18) as

f ⊗ g 7→ tr(g ◦ f) · loopa,
The pairing that induces the duality isomorphism

γ : Hom•(x, a)∗ ∼= Hom•(a, x)[d]

is also given by

(f, g) 7→ tr(g ◦ f).
It follows that the map γ ◦ β ◦ α is id⊗ loopa. □

We recall the objects an studied in Appendix B. The object an is characterised uniquely
by the existence of a filtration with factors a[0], a[−(d− 1)], . . . , a[−n(d− 1)] such that the
connecting map

a[−i(d− 1)] → a[−(i− 1)(d− 1)]

is a shift of loopa (Proposition B.2). By Proposition B.3, we have non-zero maps

in : a→ an, ln : a[−n(d− 1)− d] → an

tn : an → a[d], qn : an → a[−n(d− 1)]
(19)

forming distinguished triangles

an−1[−d]
tn−1[−d]−−−−−−→ a

in−→ an
+1−−→ and

an
qn−→ a[−n(d− 1)]

ln−1[1]−−−−→ an−1[1]
+1−−→ .

(20)

We have

(21) tn ◦ in = loopa and qn ◦ ln = loopa[−n(d− 1)− d].

The other composites are zero. Up to scaling and shifts, the maps in (19) are the only
non-zero maps between a and an.
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Lemma 4.11. Let x ∈ C be any object that does not contain a shift of a as a direct summand
and which does not have endomorphisms of negative degree. For every n ≥ 0, the natural
map x→ σn+1

a x completes to a distinguished triangle

Hom•(a, x)⊗ an → x→ σn+1
a x.

Proof. Recall that we have the triangle

(22) Hom•(a, x)⊗ a→ x→ σax
+1−−→ .

By repeatedly applying σa to the triangle above, we get the triangles

(23) Hom•(a, x)⊗ a[−i(d− 1)] → σi
ax→ σi+1

a x
+1−−→,

which assemble into the diagram
(24)

x σax · · · σn
ax σn+1

a x

Hom•(a, x)⊗ a[1] · · · · · · Hom•(a, x)⊗ a[1− n(d− 1)].

By Lemma 4.10, the connecting map between any two successive factors in (24) is a shift of
id⊗ loopa. Suppose yn completes x→ σn+1

a x to a distinguished triangle

x→ σn+1
a x→ yn

+1−−→ .

We prove the following two statements by induction on n.

(1) We have an isomorphism yn ∼= Hom•(a, x)⊗ an[1].
(2) Via the above isomorphism, the map

(25) yn → Hom•(a, x)⊗ a[1− n(d− 1)]

induced by the diagram (24) is a shift of id⊗qn+1.

The base case n = 0 follows from the distinguished triangle (22). Assume the result for
n− 1. Then (24) collapses to

x σn
ax σn+1

a x

Hom•(a, x)⊗ an−1[1] Hom•(a, x)⊗ a[1− n(d− 1)].

We now prove that the connecting map

(26) Hom•(a, x)⊗ a[1− n(d− 1)] → Hom•(a, x)⊗ an−1[2]

is id⊗ln−1[2].
Chose a homogeneous basis of Hom•(a, x) so that the map (26) may be written as a

matrix of maps from shifts of a to shifts of an−1. We know that, up to scaling and shifts,
the only two maps from a to an−1 are

(1) in−1 : a→ an−1, and
(2) ln−1 : a→ an−1[n(d− 1) + 1].

The composite

Hom•(a, x)⊗a[1−n(d−1)]
(26)−−→ Hom•(a, x)⊗an−1[2]

(25)−−→ Hom•(a, x)⊗a[2−(n−1)(d−1)].
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is the connecting map in the last two steps of (24). By Lemma 4.10, we know that it is a
shift of id⊗ loopa. From (21), we have qn−1 ◦ in−1 = 0 and qn−1 ◦ ln−1 = loopa. Therefore,
we conclude that the diagonal entries of (26) must be ln−1[2] and the off-diagonal entries
must be multiples of shifts of in−1, possibly zero. In fact, we need to prove that the off-
diagonal entries are zero. To do so, we need another fact about an−1 from the appendix:
that the map in−1 does not factor through σn

ax (Lemma B.6). We conclude that a non-zero
multiple of a shift of in−1 cannot be a summand of (26), and so the off-diagonal entries are
indeed zero.

Having proved that (26) is a shift of id⊗ln−1, it follows from Proposition B.3 that yn+1

is isomorphic to Hom•(a, x) ⊗ an and the map yn+1 → Hom•(a, x) ⊗ a[1 − n(d − 1)] is
isomorphic to a shift of id⊗qn+1. □

We now employ the machinery of rectifiable filtrations, as discussed in Appendix A,
specifically Definition A.10.

Lemma 4.12. Let x ∈ C be any object that does not have endomorphisms of negative degree
and does not have any shift of a as a direct summand. There exists N (depending on x and
a) such that for every n ≥ N , the filtration

0 → σn
ax→ σn+1

a x

is rectifiable.

Proof. The factors of the filtration are σn
ax and Hom•(a, x) ⊗ a[1 − n(d − 1)]. We need to

show that the connecting map

Hom•(a, x)⊗ a[1− n(d− 1)] → σn
ax[1]

is rectifiable. Let us show, equivalently, that its shift

χ : Hom•(a, x)⊗ a[−n(d− 1)] → σn
ax

is rectifiable.
Let α be a real number. We need to show that the map

(27) (Hom•(a, x)⊗ a[−n(d− 1)])≥α → (σn
ax)<α+1

induced by χ is zero. Without loss of generality, assume that x≤0 = 0, which can be achieved
by replacing x by a sufficiently positive shift.

First assume that α ≥ −1. Then, if n is large enough, we have

(Hom•(a, x)⊗ a[−n(d− 1)])≥α = 0.

So the map (27) is also zero.
Now assume α < −1. By Lemma 4.11, we have the exact triangle

(28) Hom•(a, x)⊗ an−1 → x→ σn
ax

+1−−→ .

It is easy to see that, α < −1 and x≤0 = 0 imply that the +1 map in (28) induces an
isomorphism

(σn
ax)<α+1 → (Hom•(a, x)⊗ an−1[1])<α+1 .

So the map in (27) is equal to the map

(29) (Hom•(a, x)⊗ a[−n(d− 1)])≥α → (Hom•(a, x)⊗ an−1[1])<α+1 .

The map above is induced by the connecting map in the filtration

x→ σn
ax→ σn+1

a x.
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We have seen in the proof of Lemma 4.11 that this map a shift of id⊗ln−1 (see (26)). Note
that ln−1 is rectifiable by Example A.3 (4) and so is id⊗ln−1 by Example A.3 (3). Therefore,
the map (29) is zero. □

Proof of Theorem 4.9. We prove the result for 0 < q ≤ 1; the case of q ≥ 1 is analogous.
We abbreviate mq,τ by m and homq by hom.

First, let x ∼= a[j]. Then
σn
ax = a[j − ne],

and hence
m(σn

ax) = qj−enm(a).

Therefore,

lim
n→∞

m(σn
ax)

q + q1−e + · · ·+ q1−(n−1)e
= lim

n→∞

qj−en

q + q1−e + · · ·+ q1−(n−1)e

= qj
(
q−d − q−1

)
.

Next, suppose x is indecomposable and not isomorphic to a shift of a. Let N be as
guaranteed by Lemma 4.12. Then, for every i ≥ N , we have

m(σi+1
a x) = m(σi

ax) +m (Hom•(a, x)⊗ a[1− ie])

= m(σi
ax) + q1−ie ·m(a).

By taking the sum as i ranges from N to n− 1, we get

m(σn
ax) =

(
q1−(n−1)e + · · ·+ q1−Ne

)
·m(a) +m(σN

a x).

Dividing by q1−(n−1)e + ·+ q1 and letting n→ ∞ yields

lim
n→∞

m(σn
ax)

q + q1−e + · · ·+ q1−(n−1)e
= m(a) · homq(a, x),

as desired.
Finally, if x is decomposable, then the desired equality follows by adding up the equalities

for each indecomposable summand. □

Let S be a set of objects of C such that no object of S has endomorphisms of negative
degree. Recall from (11) the mass map

mq : Stab(C)/C → PS.

Corollary 4.13. Let a be a spherical object that is semi-stable in a stability condition τ .
Then, in PS we have the following.

(1) If 0 < q ≤ 1, then

lim
n→∞

m(σn
ax) = homq(a).

(2) If q ≥ 1, then

lim
n→∞

m(σ−n
a x) = homq(a).

In particular, if q = 1, then
lim

n→±∞
m(σn

ax) = hom(a).

In all cases, homq(a) is in the closure of the image of the mass map.

Proof. Follows immediately from Theorem 4.9. □
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Remark 4.14 (Degenerate stability conditions). Theorem 4.9 describes one way to approach
the boundary of the stability manifold in PS, namely by applying powers of a spherical twist.
There are more direct ways to approach the boundary. Start with a stability condition τ
with heart ♡ and central charge Z : K(C) → C. Recall that Z must map non-zero objects
of ♡ to non-zero complex numbers. Take a deformation Zt of Z such that Z0 sends some
objects of ♡ to 0. Then the limit of the stability condition described by (♡, Zt) is not a
stability condition, but it is in the closure. Such limits correspond to the degenerate stability
conditions in the sense of [4].

In the analogy with the Teichmüller space, applying a spherical twist corresponds to
applying a Dehn twist. On the other hand, degenerating Z corresponds to contracting a
(collection of) curve(s). In geometry, both operations yield the same limit (see, e.g. [14]),
but the limits can be distinct in the categorical setting (see, e.g., the results of [1]).

5. Harder–Narasimhan (HN) automata

The aim of this section is to introduce some general machinery for a piecewise generalisa-
tion of a G-set (resp. a piecewise-linear generalisation of a G-representation). In Sections 7.3
and 8.4, we apply this to the action of the auto-equivalence group on the Harder–Narasimhan
filtrations of an object. The reader may choose to defer reading the remainder of this section
until required for the applications.

Let Θ be a quiver with vertex set Θ0 and edge set Θ1. For an edge α ∈ Θ1, let s(α) and
t(α) denote its source and target, respectively. A path in Θ is a finite sequence of edges
(α1, . . . , αn), such that for each i, we have

s(αi+1) = t(αi).

A Θ-representation X with values in a fixed category consists of a collection of objects of the
category {Xv | v ∈ Θ0} indexed by vertices, and a collection of morphisms {ϕ(X)α : Xs(α) →
Xt(α) | α ∈ Θ1} indexed by edges. A morphism of Θ-representations from X to Y consists
of morphisms {fv : Xv → Yv | v ∈ Θ0} such that all squares of the form

Xs(α) Ys(α)

Xt(α) Yt(α)

fs(α)

ϕ(X)α ϕ(Y )α

ft(α)

commute. A Θ-set S is a representation of Θ in the category of sets. Similarly, if A is any
ring, then a Θ-representation M of A-modules is a representation of Θ in the category of
A-modules. Clearly, any Θ-representation of A-modules is also a Θ-set. A Θ-subset T ⊂ S
is a morphism of Θ-sets in which for each v ∈ Θ0, the corresponding map Tv → Sv is an
inclusion.

Fix a group G. We say that a function ℓ : Θ1 → G is a G-labelling of Θ. We can extend
this function to paths in Θ in a natural way, as follows. If (α1, . . . , αn) is a path, then

ℓ((α1, . . . , αn)) = ℓ(αn) · · · ℓ(α1).

Consider a quiver Θ with a G-labelling ℓ : Θ1 → G. Let S be a set with a G-action.
These data naturally give rise to a Θ-set S, in which the object associated to each vertex
v ∈ Θ0 is simply Sv = S, and the map associated to any edge α is the action of ℓ(α) on S.
Similarly, a G-representation M naturally gives rise to a Θ-representation. In particular, if
C is a (triangulated) category with a G-action, then ob C is a Θ-set.
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We now take up the question of evolutions of HN filtrations under group actions. Let
C be a triangulated category and τ a stability condition on C. Let Σ be the set of all
indecomposable τ -semistable objects in the [0, 1)-heart.

Definition 5.1. Let x be any object of C. The τ -Harder–Narasimhan multiplicity vector
HNτ (x) is the element of h ∈ ZΣ defined as follows:

h(s) =
∑
n∈Z

Number of occurrences of s[n] among the τ -HN factors of x.

Remark 5.2. The definition has a natural q-analog h = HNq,τ (x) ∈ Z[q±]Σ defined by

h(s) =
∑
n∈Z

(Number of occurrences of s[n] in the τ -HN filtration of x) · qn.

We now come to the key definition that will capture the piecewise linear nature of the
evolution of HN multiplicities. Recall the notation:

C: a triangulated category,
τ : a stability condition on C,
Σ: the set of indecomposable τ semi-stable objects in the [0, 1)-heart,
G: a group acting on C.

Definition 5.3. A τ -HN automaton for C as above consists of the following data.

(1) A quiver Θ together with a G-labelling.
(2) A Θ-subset S ⊂ ob C.
(3) A Θ-representation M of Z-modules that assigns the module ZΣ to every vertex

such that the HN-multiplicity vector

S
HNτ−−−→M

defines a map of Θ-sets.

Let us make condition (3) explicit. Let α : v → w be an edge of Θ with the associated
label g ∈ G. Let

mα : ZΣ → ZΣ

be the linear map encoded by M . Then condition (3) means that the following diagram
commutes:

Sv ZΣ

Sw ZΣ .

HNτ

g mα

HNτ

Thus, for the objects in Sv, the matrix mα captures the evolution of HN multiplicities under
the application of g.

We obtain the mass of an object by applying a linear function to the HN-multiplicity
vector. Hence, an HN automaton also allows us to understand the evolution of the mass.

Remark 5.4. We establish some terminology for HN automata. Consider a τ -HN automa-
ton as explained in Definition 5.3. Following standard conventions in the theory of finite
automata, we call the vertices of Θ the states of the automaton. Given a state v, we say
that Sv is the set of objects supported at the state v. Note that an object may be supported
at multiple states. We say that an object is recognised by Θ if it is supported at some state.



THURSTON COMPACTIFICATION OF THE SPACE OF STABILITY CONDITIONS 23

We say that a group element g ∈ G is recognised by Θ if g = σ(e) for some arrow e of Θ.
Likewise, we say that an expression g = gn · · · g1 in G is recognised by Θ if there is a path
(α1, . . . , αn) in Θ such that gi = ℓ(αi), and hence

g = ℓ((α1, . . . , αn)).

Finally, let x be an object of C supported at a state v. Suppose that y = gn · · · g1 · x for
some group elements gn, . . . , g1, and suppose also that gn · · · g1 is a recognised expression
via a path starting at the state v. In this case, we say that the writing y = gn · · · g1 · x is
recognised by Θ.

6. The category CΓ
In this section we recall the definition and properties of 2-Calabi–Yau categories asso-

ciated to quivers. Fix Γ, a connected undirected graph without loops or multiple edges.

Definition 6.1. The Artin–Tits braid group associated to Γ, denoted by Bγ is the group
generated by σi, where i ranges over the set of vertices of Γ, modulo the following relations:

σiσjσi = σjσiσj if there is an edge between i and j,

σiσj = σjσi otherwise.

Definition 6.2. The Coxeter group associated to Γ, denoted by Wγ , is the quotient of BΓ

by the following additional relations. For each vertex i of Γ, set

σ2
i = 1.

Denote the image of σi in WΓ by si.

Let VΓ be the Z-module with basis vectors vi indexed by the vertices of Γ. Define a
bilinear form on VΓ by the following formula:

⟨vi, vj⟩ =


2 if i = j,

−1 if i and j are connected by an edge,

0 otherwise.

Definition 6.3. The standard representation of WΓ is the action on VΓ defined by the
formula

si(vj) = vj − ⟨vi, vj⟩vi.

We describe a category CΓ with a (weak) action of BΓ that categorifies the standard
representation of WΓ. The construction is via the zig-zag algebra, which was introduced
in [18]. A construction of CΓ for type An graphs is in [29,32].

We first recall the zig-zag algebra. A version of this construction is also in [2, §2.3], but
in that version, we have not been careful with signs; see Remarks 6.6, 6.10 and 6.11.

Let Γdbl denote the doubled quiver of Γ. This is the directed graph obtaind by replacing
each edge of Γ by a pair of oppositely oriented edges between its endpoints. For each
original edge e in Γ between i and j, we let eij and eji be the corresponding arrows in Γdbl

from i to j and j to i respectively. Let Path(Γdbl) denote the path algebra of Γdbl. As a
vector space over k, the algebra Path(Γdbl) is spanned by all oriented paths in Γdbl, and the
multiplication is given by concatenation. The length function on paths that declares edges
to have length one induces a non-negative grading on Path(Γdbl).

We define the zigzag algebra of Γ, as follows.
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Definition 6.4. Suppose Γ has at least two vertices. Fix a sign sij ∈ {+1,−1} for each
arrow eij in Γdbl such that sij = − sji. Let A(Γ) = As(Γ) be the quotient of the path algebra
Path(Γdbl) by the two-sided ideal generated by the following elements:

(1) all length three paths,
(2) length two paths whose source and target differ,
(3) for vertices i, j, k of Γ such that there are edges eij and eik, the element

sij eijeji − sik eikeki.

If Γ has one vertex, (type A1), set A(Γ) = C[x]/x2. We call A(Γ) the zigzag algebra of Γ.

Note that the third relations in the definition above imply that all degree-two paths
starting and ending at the same vertex are equal up to sign. We call one such non-zero
path a “loop” at a vertex. When Γ has at least two vertices, the relations of A(Γ) are all
homogeneous, and so the natural grading on Path(Γdbl) descends to a grading on A(Γ).
When Γ has a single vertex, grade A(Γ) = C[x]/x2 by setting deg(x) = 2.

The choice of signs does not matter.

Proposition 6.5. Consider another choice of signs s′ij ∈ {+1,−1} such that s′ij = −s′ji.
Then the map

eij 7→ sij s
′
ij eij

induces an isomorphism of graded algebras As(Γ) ∼= As′(Γ).

Proof. We leave the proof to the reader. □

Remark 6.6. In [2], we gave a definition of the zig-zag algebra that ignored the choice of
signs in Definition 6.4, in effect taking sij = sji = 1. This unsigned version also appears
in [18] and [32] for type A. Let B(Γ) denote this unsigned version of the zig-zag algebra,
namely the algebra with the same generators and relations as A(Γ) from Definition 6.4, but
in which we set sij = 1.

We prefer to work with the algebra A(Γ) in this paper, as it gives rise to a strongly
2-Calabi–Yau category CΓ; see Remarks 6.10 and 6.11. However, if the unoriented graph Γ
is bipartite, the two definitions are equivalent, as stated in Proposition 6.7. In particular,
the definitions are equivalent for finite type ADE.

The following is easy to check; we omit the proof.

Proposition 6.7. Let Γ = {Γ1,Γ2} be an unoriented bipartite graph without self-loops or
multiple edges, in which each edge connects a vertex of Γ1 with a vertex of Γ2. Let A(Γ) be
the zig-zag algebra as in Definition 6.4 and B(Γ) the unsigned zig-zag algebra. Consider the
map from A(Γ) to B(Γ) in which

eij 7→

{
sij eij if i ∈ Γ1 and j ∈ Γ2,

eij if i ∈ Γ2 and j ∈ Γ1.

This map is an algebra isomorphism.

The minimal idempotents of A(Γ) are the length zero paths (i) for i ∈ Γ. The modules
Pi = A(Γ)(i) are indecomposable projective left A(Γ) modules. Any finitely-generated
graded projective left A(Γ) module is isomorphic to a direct sum of grading shifts of the
modules Pi.

The category of complexes of graded projective left A(Γ) modules admits two “shift”
functors, namely the homological shift and the grading shift. We work in a simpler setting
where the two shifts are identified. We construct the desired category as follows.
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Regard A(Γ) as a differential graded algebra (dga) where all differentials are zero. Let
K(dgmod-A) be the category of finite-dimensional differential graded modules (dgms) over
the dga A(Γ). Morphisms in K(dgmod-A) are homotopy classes of chain maps that are
compatible with the action of A(Γ). Then K(dgmod-A) is a triangulated category (see,
e.g. [31, Section 22.8]).

Definition 6.8. Set CΓ to be the smallest full and strict triangulated subcategory generated
by the objects Pi as i ranges over the vertices of Γ.

Remark 6.9. The categories considered in [29] and [32] are described in a slightly different
way. However, [2, Proposition 2.1] shows that they coincide with our category CΓ. The
category considered in [18] is the category of graded projective A(Γ)-modules; see [2, § 2.3.3]
for a discussion on how it is related to CΓ.

We state the salient properties of CΓ from [2, § 2.3].

(1) CΓ is a k-linear triangulated category.
(2) CΓ is (strongly) 2-Calabi–Yau. That is, for every pair of objects x, y ∈ C and i ∈ Z,

we have a natural non-degenerate graded symmetric pairing

Homi(x, y)⊗Hom•2−i(y, x) → k.

Graded symmetric means that the pairing is symmetric for even i and skew-symmetric
for odd i.

(3) CΓ is classically generated by the objects Pi. These objects satisfy

Hom•(Pi, Pi[n]) =

{
k if n = 0 or n = 2,

0 otherwise;

Hom•(Pi, Pj [n]) =

{
k if n = 1 and i and j are neighbours,

0 otherwise, for i ̸= j.

(4) The extension closure of the objects Pi is an abelian category, which is the heart of
a bounded t-structure on CΓ. We call this t-structure the standard t-structure on
CΓ, and refer to its heart as the standard heart ♡std.

The Grothendieck group KΓ of CΓ is a Z-module with a pairing given by

⟨[x], [y]⟩ =
⊕
i

(−1)i dimHomi(x, y).

It is easy to check that we have an isomorphism VΓ → KΓ compatible with the pairing,
defined by vi 7→ [Pi].

Remark 6.10. The pairing

Hom(x, y)⊗Hom2−i(y, x) → k

is defined exactly as in [2, § 2.3]. The choice of signs in Definition 6.4 gives the graded
symmetry, and hence a strongly 2-Calabi–Yau category (see [24]).

Remark 6.11. The zig-zag algebra A(Γ) arises naturally as follows. Let {Pi | i ∈ Γ} be a
collection of spherical objects in a strongly 2-CY triangulated category. Assume that for
i ̸= j, we have

Hom1(Pi, Pj) ∼=

{
k if ij is an edge of Γ,

0 otherwise.
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Set P =
⊕

i∈Γ Pi. Then the endomorphism algebra of P is isomorphic to the zig-zag algebra
A(Γ) as defined in Definition 6.4. We describe an explicit isomorphism

ψ : A(Γ) → End(P ).

Choose a sign sij ∈ {±1} for each edge ij of Γdbl such that sij = −sji. For edge ij with

sij = 1, let ψ(eij) ∈ Hom1(Pi, Pj) be any non-zero element and ψ(eji) be the unique element
such that

⟨ψ(eij), ψ(eji)⟩ = 1.

Then it is easy to check that ψ : A(Γ) → End(P ) an isomorphism of graded algebras.

Recall that the indecomposable projective modules Pi in CΓ are spherical. Furthermore,
the spherical twists in the Pi satisfy the defining relations of the Artin–Tits braid group BΓ

associated to Γ (see, e.g., [18]). That is,

σPiσPjσPi
∼= σPjσPiσPj when i and j are connected by an edge of Γ,

σPi
σPj

∼= σPj
σPi

when i and j are not connected by an edge of Γ.

Via the homomorphism BΓ → Aut(CΓ) defined by σi 7→ σPi
, we have a (weak) action of BΓ

on CΓ. This action is known to be faithful in some cases—for example when Γ is an ADE
Dynkin diagram [7,25]—and is conjecturally faithful for all Γ. The induced action on KΓ is
the standard (geometric) representation of the Coxeter group associated to Γ.

6.1. Injectivity of the mass map. We now fix the graph Γ and let C = CΓ be the
associated strongly 2CY category. We say that a stability condition τ is standard if its
[0, 1) heart is the standard heart ♡std. It is easy to see that the set of standard stability
conditions is connected. Let Stab◦ CΓ ⊂ Stab CΓ be the connected component containing
this set.

Let S to be the set of spherical objects x of CΓ such that x is stable with respect to
some stability condition in Stab◦ CΓ. The goal of Section 6.1 is to show that the map
mq : Stab◦(C)/C → PS is injective. We need two lemmas.

Lemma 6.12. Let τ be a standard stability condition on C. Let τ ′ be any stability condition
such that for all spherical objects x ∈ S, we have

mq,τ (x) = mq,τ ′(x).

Suppose that ϕτ (P1) < ϕτ (P2) and ϕτ ′(P1) = ϕτ (P1). Then ϕτ ′(P2) = ϕτ (P2).

Proof. We introduce some notation. Given an edge ij in Γ, let Pij denote the cone of a
non-zero morphism Pi[−1] → Pj . Note that Pij is spherical and fits in an exact sequence

0 → Pi → Pij → Pj → 0

in the standard heart.
Since we have ϕτ (P1) < ϕτ (P2), the argument of the central charge of P21 lies strictly

between these two; that is

ϕτ (P1) < arg(Zτ (P21)) < ϕτ (P2).

Since the only proper sub-object of P21 in the standard heart is P1, we observe that P21 is
τ -stable. The previous inequality gives us

(30) ϕτ (P1) < ϕτ (P21) < ϕτ (P1) < ϕτ (P1) + 1.
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Recall from Corollary 3.10 that τ and τ ′ have the same stable spherical objects. In particular,
P21 is also τ ′-stable. Since we know that

Hom(P1, P21) ̸= 0, Hom(P21, P2) ̸= 0, and Hom(P2, P1[1]) ̸= 0,

the analogous inequalities hold for ϕτ ′ :

(31) ϕ′τ (Pi) < ϕ′τ (Pji) < ϕ′τ (Pj) < ϕ′τ (Pi) + 1.

We also know that

mq,τ ′(P1) = mq,τ (P1), mq,τ ′(P21) = mq,τ (P21), mq,τ ′(P2) = mq,τ (P2).

By [1, Lemma 5.2], it follows that the pair of complex numbers (Zτ (P1), Zτ (P2)) is equal to
the pair (Zτ ′(P1), Zτ ′(P2)) possibly after a rotation and a reflection. The inequalities (30)
and (31) imply that no reflection is necessary, and the equality ϕτ (P1) = ϕτ ′(P1) implies
that no rotation is necessary. We conclude that Zτ (P2) = Zτ ′(P2); call this number z. Since
both ϕ = ϕτ (P2) and ϕ = ϕτ ′(P2) have the property that eiπϕ lies on the same real ray as
z, and both lie in the interval [ϕτ (P1), ϕτ (P1) + 1), we conclude that they are equal. □

Lemma 6.13. Let τ be a standard stability condition on C. Let τ ′ be any stability condition
such that for all x ∈ S, we have

mq,τ (x) = mq,τ ′(x).

Moreover, suppose ϕτ (P1) = ϕτ (P2). Then ϕτ ′(P1) = ϕτ ′(P2). In particular, if ϕτ ′(P1) =
ϕτ (P1), then we also have ϕτ ′(P2) = ϕτ (P2).

Proof. Recall from Corollary 3.10 that τ and τ ′ have the same stable spherical objects. In
particular P1 and P2 are also τ ′-stable.

Let x = P12. We claim that the τ ′-stable factors in the τ ′-HN filtration of x are precisely
P1 and P2. To see this, consider a filtration

(32) 0 = x0 → x1 → · · · → xn = x

whose factors ai are τ
′-stable and appear in the order of non-increasing phase. By the Mukai

lemma [20, Lemma 2.2] the ai are spherical and by Corollary 3.10 also τ -stable. We have

mq,τ ′(x) =
∑
i

mq,τ ′(ai),

and hence

mq,τ (x) =
∑
i

mq,τ (ai).

But x is τ -semistable. Therefore by Proposition 3.3, we conclude that the τ -stable objects
ai all have τ -phase ϕ = ϕτ (x). Since the ai are τ -stable, they are simple objects of the
category Cτ,ϕ. Thus, (32) is a Jordan–Hölder filtration of x in Cτ,ϕ. But we know that x
has a unique Jordan–Hölder filtration in Cτ,ϕ, namely

(33)

0 P2 x.

P2 P1

Therefore, the filtration (32) must coincide with (33). That is, P1 and P2 are the τ ′-stable
HN factors of x, with

ϕτ ′(P2) ≥ ϕτ ′(P1).
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By the same argument, the τ ′-stable factors of y = P21 are also P1 and P2, with

ϕτ ′(P1) ≥ ϕτ ′(P2).

It follows that ϕτ ′(P1) = ϕτ ′(P2). □

Proposition 6.14 (Injectivity). Let C be the 2CY category associated to a finite connected
quiver Γ. Let q > 0 be a real number. Then the mass map mq : Stab◦(C)/C → PS is
injective.

Proof. Let τ be a stability condition in Stab◦(C). By [21, Proposition 4.13], τ is in the braid
group orbit of a standard stability condition up to the action of C. (Although [21] treats
the case of preprojective algebras, the same proof works in our setting.) By applying a braid
and an element of C, suppose that τ is standard. Since the objects Pi are simple objects of
the standard heart, they are τ -stable.

Let τ ′ be another stability condition such that mq(τ) = mq(τ
′) ∈ PS. By scaling the

central charge of τ ′, we may assume that mq,τ = mq,τ ′ on S. By Corollary 3.10, τ and τ ′

have the same spherical stable objects.
Label the vertices of Γ by {1, . . . , n} so that for each i > 1 there is some j < i such that

the sub-quiver {i, j} is of type A2. By translating the slicing of τ ′ if necessary, assume that
ϕτ ′(P1) = ϕτ (P1). Rescale the central charge again to ensure that mq,τ = mq,τ ′ continues
to hold on S. Then Zτ (P1) = Zτ ′(P1).

We now prove by induction on i that ϕτ (Pi) = ϕτ ′(Pi) and Zτ (Pi) = Zτ ′(Pi). The base
case i = 1 holds by construction. For the induction step, let i > 1. Consider j < i such that
the sub-quiver {i, j} is of type A2. By the induction hypothesis, we have ϕτ ′(Pj) = ϕτ (Pj)
and Zτ ′(Pj) = Zτ (Pj). Depending on whether or not the quantities ϕτ (Pi) and ϕτ (Pj)
are equal, we are now in the setting of one of Lemmas 6.12 and 6.13. In both cases, we
conclude that ϕτ ′(Pi) = ϕτ (Pi). Since we already have mq,τ (Pi) = mq,τ ′(Pi), we conclude
that Zτ (Pi) = Zτ ′(Pi).

Since ϕτ (Pi) = ϕτ ′(Pi) and 0 ≤ ϕτ (Pi) < 1, the same holds for ϕτ ′(Pi). In particular, Pi

lies in the [0, 1) heart of τ ′. As a result, ♡std is contained in the [0, 1)-heart of τ ′. Since both
are hearts of bounded t-structures, they must be equal. Furthermore, since the Pi span the
Grothendieck group and Zτ (Pi) = Zτ ′(Pi), we have Zτ = Zτ ′ . So τ ′ is a stability condition
with the same heart and central charge as τ . We conclude that τ ′ = τ . □

6.2. Homeomorphism onto the image. Having proved injectivity, we take up the ques-
tion of mq being a homeomorphism onto its image.

As before, let C be the 2CY category associated to a finite connected quiver. We begin by
explicitly identifying convenient open neighbourhoods of points in Stab(C)/C whose closure
is compact.

Let W ⊂ Stab(C) be the set of standard stability conditions. It is easy to see that
W ⊂ Stab(C) is locally closed. Let H ⊂ C be the semi-closed upper half plane

H = {z ∈ C | z = reiπϕ for r ∈ R>0 and ϕ ∈ [0, 1)}.
We have a homeomorphism

(34) Hn →W

that sends (z1, . . . , zn) to the stability condition whose [0, 1)-heart is the standard heart and
whose central charge is defined by [Pi] 7→ zi.

Fix a small ϵ > 0. Let Wϵ ⊂W be the open subset of stability conditions τ that satisfy

ϵ < mq,τ (Pi) < ϵ−1.
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Likewise, let Hϵ ⊂ H be the open subset containing z = reiπϕ such that

ϵ < rqϕ < ϵ−1.

Then (34) restricts to a homeomorphism

Hn
ϵ →Wϵ.

Let Hϵ ⊂ C be the closure of Hϵ. Then Hϵ is closed and bounded, and hence compact. Let
W ϵ ⊂ Stab(C) be the closure of Wϵ.

Proposition 6.15. The map Hn
ϵ → Wϵ extends to a homeomorphism H

n

ϵ → W ϵ. As a
result, W ϵ is compact.

Proof. We first extend the map Hn
ϵ → Stab(C) to H

n

ϵ . The only points of Hϵ not in Hϵ

are the complex numbers of argument 1. Given (z1, . . . , zn) ∈ H
n

ϵ , let S ⊂ {1, . . . , n} be
the indices such that the argument of zi is 1. Let A ⊂ C be the extension closure of Pi for
i ̸∈ S and Pi[−1] for i ∈ S. This is a tilt of the standard heart, and hence also the heart of
a bounded t-structure. We send (z1, . . . , zn) to the stability condition whose [0, 1)-heart is
A and whose central charge is defined by [Pi] 7→ zi. It is easy to check that the resulting
map is continuous, and defines the required homeomorphism. □

Let U ⊂ Stab(C)/C be the image of W under the quotient map Stab(C) → Stab(C)/C.
This is the set of stability conditions (up to translation) in which the objects Pi are stable
and their phases lie in an open interval of length 1. It is easy to check that U ⊂ Stab(C)/C
is an open subset. Let Uϵ ⊂ U be the image of Wϵ.

Proposition 6.16. The open set Uϵ ⊂ Stab(C)/C has a compact closure.

Proof. The closure U ϵ is the image of W ϵ, which is compact by Proposition 6.15. □

The following proposition will be used when we show that the mass map is a homeomor-

phism onto its image in type A2 and Â1. First let us establish some notation.

Definition 6.17. Fix some q > 0. Let τ be a stability condition. We say that τ collapses

a distinguished triangle x→ y → z
+1−−→ if

mq,τ (y) = mq,τ (x) +mq,τ (z).

If τ does not collapse x→ y → z
+1−−→, then we have a strict triangle inequality

mq,τ (y) < mq,τ (x) +mq,τ (z).

Proposition 6.18. Let τ be a standard stability condition. Suppose there exists a finite set
T of distinguished triangles of objects in S with the following properties:

(1) no triangle in T is collapsed by τ ;
(2) if τ ′ is any stability condition such that no triangle in T is collapsed by τ ′, then τ ′

is standard up to the action of C.

Then

mq : Stab(C)/C → PS

is a local homeomorphism onto its image at τ .
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Proof. We abbreviate mq by m.
Since τ is standard, it represents a point of U ⊂ Stab(C)/C, which we also denote by τ .

For a small enough ϵ, we have τ ∈ Uϵ. The set U ϵ is compact by Proposition 6.16 and m is
injective by Proposition 6.14. Therefore the map

(35) m : U ϵ → m(U ϵ)

is a continuous bijection between two compact sets and hence a homeomorphism.
Let V be the subset of the image of m consisting of points [f ] that satisfy the inequalities

f(y) < f(x) + f(z)

for each non-collapsed triangle x → y → z
+1−−→ asserted by the hypotheses. Then V is an

open subset of the image of m containing m(τ). Furthermore, by the hypotheses, we have

m−1(V ) ⊂ U.

Let Vϵ ⊂ V be the open subset defined by the conditions

(1) f(P1) ̸= 0, and
(2) for all i, we have

ϵ < f(Pi)/f(P1) < ϵ−1.

Then it is easy to check that m−1(Vϵ) ⊂ Uϵ. If ϵ is small enough, then m(τ) ∈ Vϵ and hence
τ ∈ m−1(Vϵ). The map

m : m−1(Vϵ) → Vϵ

is a restriction of the homeomorphism (35), and hence a homeomorphism. Thus, m maps an
open neighbourhood of τ homeomorphically to an open neighbourhood of m(τ), and hence
is a local homeomorphism at τ . □

Remark 6.19 (Existence of triangles). We prove the existence of the triangles T required in

Proposition 6.18 in the A2 and Â1 cases, but we them more generally.

Remark 6.20 (Functionals in the closure). It follows from Corollary 4.13 that the hom
functionals are in the closure of the mass map. Whether these functionals are dense in the
boundary depends on q. In the next two sections we answer this question for q = 1 in the

A2 and Â1 cases. [1] answers this question for other values of q in the A2 case.

7. The A2 case

The aim of this section is to understand the Thurston compactification at q = 1 of the
stability space for the 2-Calabi–Yau category CΓ where Γ is the A2 quiver.

7.1. Standard stability conditions. Let C be the 2-Calabi–Yau category associated to
the A2 quiver, as defined in Section 2. It is a graded, k-linear triangulated category classi-
cally generated by two spherical objects P1 and P2. The standard heart ♡std is the extension
closure of P1 and P2. It has two simple objects, P1 and P2, and two additional indecom-
posable objects, denoted by P12 and P21. The object Pij is the unique extension of Pi by
Pj .

Recall that τ ∈ Stab(C) is standard if its [0, 1) heart is ♡std and a point in Stab(C)/C is
standard if it is the image of a standard τ .

We divide the set of standard stability conditions in two subsets as follows. Recall that for
a standard τ , both P1 and P2 must be τ -stable. We say that τ is of type I if ϕ(P1) ≤ ϕ(P2)
and of type II if ϕ(P2) ≤ ϕ(P1). If ϕ(P1) = ϕ(P2), then τ is of both types, and we say that
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it is on-the-wall ; otherwise, it is off-the-wall. See Figure 2 for a sketch of the central charges
of the stability conditions of the two types.

The two types are distinguished by which of P12 or P21 is semi-stable. In type I, P21 is
semi-stable; in type II, P12 is semi-stable; on the wall, both are semi-stable.

P1P2

P21

•

st
a
n
d
a
rd

type I

P1

P2

P21

P12

•

P2P1

P12

•

type II

Figure 2. Central charges in a standard stability condition of types I and
II. The intersection of the two types are stability conditions on-the-wall.

The subset of Stab(C)/C represented by standard stability conditions of type I is locally
closed. Let Λ be the closure of this set. Note that Λ includes some non-standard stability
conditions, namely those with ϕ(P2) = ϕ(P1) + 1. The set Λ tiles Stab(C)/C under the
action of B3. That is, Λ satisfies the following properties (see, e.g., [9, Proposition 4.2]).

(1) Each point of Stab(C)/C lies in the B3-orbit of a point of Λ.
(2) The stabiliser of Λ is the subgroup generated by γ = σ2σ1 in B3.
(3) For any g ∈ B3 not in the stabiliser, the interiors of Λ and gΛ have empty intersec-

tion.

See Figure 6 for a picture of the tiling of Stab(C)/C by the orbit of Λ. The interior of Λ is
the set of standard off-the-wall stability conditions of type I.

7.2. The spherical objects. Let S be the set of spherical objects of C, up to isomorphism
and shift. It turns out that elements of S can be naturally thought of as rational points on
the circle P1(R). We explain how.

Recall that the Artin–Tits braid group of the A2 quiver is

B3 = ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩.
It acts on C via the homomorphism

σi 7→ σPi
.

It turns out to act transitively on the set of all the spherical objects of C, and hence on S [2].
The element (σ2σ1)

3 generates the center of B3 and acts on the category by x 7→ x[−2]. As
a result, the action of B3 on S factors through B3/Z(B3). On the other hand, we have an
isomorphism B3/Z(B3) → PSL2(Z) given by

σ1 7→
(
1 1
0 1

)
, σ2 7→

(
1 0
−1 1

)
.
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The action of B3 on C is faithful [25, 28]. It is easy to check that the stabiliser of P1 ∈ S is
generated by σ1. As a result, we have a PSL2(Z)-equivariant bijection

(36) i : S → P1(Z)

defined uniquely by the choice

P1 7→ [1 : 0].

Let us describe the spherical object corresponding to a point [a : c] ∈ P1(Z). Assume
c ̸= 0. Write the rational number a/c as a continued fraction with an odd number of terms:

a

c
= n0 +

1

n2 +
1

. . . +
1

n2k

.

Here, each ni is an integer, with ni > 0 for i = 1, . . . , 2k. Then [a : c] corresponds to the
object of S given by

(37) σn0
1 σ−n1

2 · · ·σn2k
1 (P2).

For example, we get

P1 7→ [1 : 0], P2 7→ [0 : 1], P21 7→ [1 : −1], and P12 7→ [1 : 1].

7.3. The automaton. Fix an off-the-wall standard stability condition τ of type I. Let
Σ = {P1, P2, P21}, the set of indecomposable τ -stable objects of the heart. Set X = P21.
Define the braid γ ∈ B3 by

γ = σ2σ1 = σXσ2 = σ1σX .

We now describe an HN automaton Θ that computes τ -HN multiplicities of all spherical
objects (see Figure 3).

Formally (following Definition 5.3), the automaton Θ is defined by the G-labeled graph
with three vertices and three edges from each vertex, as shown in Figure 3. Note that the
states are called [X,P1], [P1, P2], and [P2, X]. The Θ-set S is defined by setting S[a,b] to be
the set of spherical objects whose τ -stable HN factors are shifts of a and b. For example, the
object P112 = σ1σ1(P2) has stable HN factors P1[−1], P1, and P2, and hence is supported at
the state [P1, P2]. The objects P1, P2, and X are supported at two states. Recall that the
representation M associates the rank 3 module ZΣ to each state. However, by construction,
at the state [a, b], the image of HNτ : S → ZΣ lands in the rank 2 sub-module Z{a,b. We
replace ZΣ by this sub-module. Then the maps M(e) are given by 2 × 2 matrices in the
standard basis, as shown in Figure 3. The arrows labelled γ±1 correspond to the identity
matrix, which we omit in the figure.

Proposition 7.1 proves that this setup does indeed define an HN-automaton.

Proposition 7.1. Let e : v → w be an arrow of Θ, where v = [a, b] and w = [c, d]. Let
x ∈ C be any object whose stable τ -HN factors are shifts of a and b. The following hold.

(1) The stable τ -HN factors of e · x are shifts of c and d.
(2) The following diagram commutes.

x HNτ (x) ∈ Z{a,b}

e · x HNτ (e · x) ∈ Z{c,d}

HNτ

e M(e)

HNτ
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[P1, P2][X,P1]

[P2, X]

σ1,

(
1 1

0 1

)

σX ,

(
1 0
1 1

)

γ−1

γ

σX ,

(
1 1

0 1

)

σ
2 , (

1
0

1
1

)

γ−1

γ

σ2,

(
1 1
0 1

)
σ 1
,

( 1
0

1
1

)

γ

γ−1

Figure 3. An automaton describing the dynamics of Harder–Narasimhan
filtrations in a stability condition with stable objects P1, P2, and X = P21.

In other words,

HNτ (e · x) =M(e) ·HNτ (x).

Proof. Let

0 → x0 → x1 → · · · → xn = x

be a filtration of x with whose factors zi = Cone(xi−1 → xi) are stable and appear in
non-increasing order of phase. Then, by hypothesis each zi is a shift of a or b. By applying
e, we get a filtration

(38) 0 → e · x0 → e · x1 → · · · → e · xn = e · x

with factors e · zi.
We check that the filtration (38) is rectifiable in the sense of Definition A.10. We use

Theorem A.18.
We outline the case v = [P1, P2], leaving the others to the reader. To apply Theorem A.18

to the filtration (38), we must check the following: for i < j, either

(1) Hom(e · zj , e · zi[1]) = Hom(e · zi, e · zj [1]) = 0, or
(2) ⌊e · zi⌋ ≥ ⌈e · zj⌉.

If zi ∼= zj , then (1) holds. Let us assume otherwise, so that ϕ(zi) > ϕ(zj). Since we are in
a 2-CY category, Hom(e · zj , e · zi[1]) vanishes if and only if Hom(e · zi, e · zj [1]) does. We
enumerate the pairs (zi, zj) such that
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(1) zi and zj are shifts of P1 or P2,
(2) ϕ(zi) > ϕ(zj), and
(3) Hom(zj , zi[1]) ̸= 0.

Up to a simultaneous shift, the only such pairs are (P1[1], P1), (P2[1], P2), and (P2, P1). The
outgoing edges e from v are labeled σ1,σ2, or γ. It is a simple check that for each of these
edges and each of the enumerated pair, condition (2) holds.

Since the filtration (38) is rectifiable, it follows from Proposition A.9 that

HNτ (e · x) =
∑

HNτ (e · zi).

Therefore, it suffices to prove the proposition for x = zi, and hence, for x = a and x = b.
This is another straightforward calculation. □

The automaton recognises every spherical object in the sense of Remark 5.4.

Proposition 7.2. The following hold.

(1) Every β ∈ B3 has an expression of the form

β = γnσm1
a1
σm2
a2

· · ·σmk
ak
,

where n is an integer, k is a non-negative integer, the mi are positive integers, and
the sequence (a1, a2 . . . , ak) is a contiguous subsequence of the sequence

(. . . , X, 1, 2, X, 1, 2, . . .).

(2) Every spherical object s ∈ C has an expression

s = β1 · · ·βnP1

that is recognised by Θ.

Proof. For (1), we repeatedly use the commutation relations

γσ2γ
−1 = σ1, γσXγ

−1 = σ2, γσ1γ
−1 = σX .

Begin by writing β as any product of the generators σ1 and σ2, along with their inverses.
Eliminate the inverses of the generators by rewriting as follows:

σ−1
1 = σXγ

−1, σ−1
2 = σ1γ

−1.

Next, use the commutation relations to rewrite

(39) γiσX = σ2γ
i, γiσ1 = σXγ

i, γiσ2 = σ1γ
i,

and thus move all powers of to the left. The rest of β is now a product of elements from
{σ1, σ2, σX}. Replace any occurrences of σ2σ1, σ1σX , or σXσ2 by γ and again move γ to
the left as before. It is easy to see that eventually, β reaches the desired form.

For (2), begin by writing s = βP1 for some β ∈ B3. Write

β = γnσm1
a1
σm2
a2

· · ·σmk
ak

as in (1). Note that P1 is supported at two states, namely [P1, P2] and [X,P1]. Each of the
letters {σ1, σ2, σX} is applicable at least at one of the two states above, so we can apply σak

.
The condition on our cyclic writing guarantees that we can apply each subsequent letter.
Therefore, Θ recognises the expression

s = γnσm1
a1
σm2
a2

· · ·σmk
ak
P1.

□
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As a consequence of Proposition 7.2, every spherical object is supported on at least one
of the three states. In particular, its HN factors involve (up to shift) only 2 out of the 3
objects P1, P2, and X.

Proposition 7.3. Let s be a spherical object supported at the state [P1, P2]. Assume that s
is not a shift of P1 or P2. Then

(1) we can write s = σr
1t for some r > 0 and an object t supported at [P2, X];

(2) we can write s = σ−r
2 t for some r > 0 and an object t supported at [X,P1].

Analogous statements hold for the other two states.

Proof. Write a recognised expression s = γnσm1
a1
σm2
a2

· · ·σmk
ak
P1 as in the proof of Proposi-

tion 7.2. Since s is not a shift of P1, P2, or X, we have k ≥ 1. Using the commutation
relations (39), move γ to the right to obtain another expression s = σm1

b1
σm2

b2
· · ·σmk

bk
γnP1,

which is also recognised by Θ. Observe the state at which the recognising path ends is
dictated by b1. For b1 = 1, the end state is [P1, P2]; for b1 = 2, it is [P2, X]; and for b1 = X,
it is [X,P1]. By assumption, we must have b1 = 1.

Taking r = m1 and t = σm2

b2
· · ·σmk

bk
γnP1 yields the first assertion. For the second

assertion, consider
σ2s = σ2σ

m1

b1
· · ·σmk

bk
γnP1.

Write σ2σb1 = σ2σ1 as γ and move γ to the right using the commutation relations (39), to
obtain a recognised expression for σ2s. Its leftmost letter is γ, σX , or σ1. In the first two
cases, we stop; in the last case we consider σ2

2s. After finitely many steps, we get t = σr
2s

supported at [X,P1] with r > 0. □

Remark 7.4. Let τ be an on-the-wall standard stability condition. Figure 4 describes a
τ -HN automaton that recognises all spherical objects. Since the automaton in Figure 3
suffices for mass computations, we omit the details.

Remark 7.5. For every off-the-wall stability condition, we have an HN automaton obtained
by applying an appropriate braid to the automaton in (3). Likewise, for a on-the-wall sta-
bility condition, we have an HN automaton obtained by applying a braid to the automaton
in (4). Thus, we have an automaton at every point of the stability space. Observe that
these automata exhibit a wall-and-chamber behaviour: they remain constant in a chamber,
get more complicated along a wall, and flip to a different automaton as we cross the wall.
It would be interesting to understand the wall-crossing formulas for recognized expressions
of a fixed braid in different chambers.

7.4. Consequences of the automaton. In this section, we use the automaton from Sec-
tion 7.3 to prove results about m : Stab(C)/C → PS and h : S → PS We prove that m
is a homeomorphism onto its image (Proposition 7.8) and describe the closure of h (). In
subsequent sections, we establish that the closure of h is indeed the boundary of the image
of m.

Recall that X = P21. Recall from Definition 6.17 that x → y → z
+1−−→ is a collapsed

triangle if m(y) = m(x) +m(z).

Proposition 7.6. Consider the following collection of distinguished triangles:

T = {P1 → X → P2
+1−−→, X → P2 → P1[1]

+1−−→, P2[−1] → P1 → X
+1−−→}.

If τ is an off-the-wall standard stability condition of type I, then no triangle in T is collapsed
by τ . Furthermore, if τ ′ is any stability condition such that no triangle in T is collapsed by
τ ′, then τ ′ is standard of type I, up to the action of C.
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[X ′, P2][P1, X
′]

[X,P1] [P2, X]

σ1

γ′

σ1

σ2γ

σ2

γ

σ1 γ′

σ2

γ,
w

±
0

γ
′ ,
w

±
0

γ ′, w ±
0

γ, w ±
0

Figure 4. An automaton describing the dynamics of HN filtrations in an
on-the-wall stability condition with semistable objects P1, P2, X = P21,
and X ′ = P12. Here γ = σ2σ1; γ

′ = σ1σ2; and w0 = σ1σ2σ1 = σ2σ1σ2.

Proof. It is immediate from Proposition 3.3 (or a direct check) that no triangle in T is
collapsed by any off-the-wall standard stability condition of type I.

Let τ ′ be any stability condition. Recall that τ ′ is in the braid group orbit of a standard
stability condition τ of type I. Write τ ′ = βτ ′′ for some braid β and some standard stability
condition τ ′′ of type I.

If β is a power of γ, then τ ′ is already standard of type I. Otherwise, we exhibit a triangle
of T that is collapsed by τ ′. Equivalently, we exhibit a triangle of β−1T that is collapsed
by τ ′′.

Suppose that τ ′′ is off-the-wall. Consider a cyclic writing of β−1 as described in Propo-
sition 7.2. Since β is not a power of γ, this writing has rightmost letter either σ1, σ2, or
σX . Suppose the rightmost letter of β−1 is σ1. Consider the first triangle in T , namely

X → P2 → P1[1]
+1−−→. Observe from the automaton in Figure 3 that the objects P1, P2, and

X are all sent to the state [P1, P2] after applying σ1. Furthermore, we have the equation

HNτ ′′(σ1(X)) = HNτ ′′(σ1(P1)) +HNτ ′′(σ1(P2)).

The equation above persists by linearity as we apply each successive letter of the cyclic
writing of β−1, resulting in the equation

HNτ ′′(β−1(X)) = HNτ ′′(β−1(P1)) +HNτ ′′(β−1(P2)),

and hence

mτ ′′(β−1(X)) = mτ ′′(β−1(P1)) +mτ ′′(β−1(P2)).

Hence the triangle β−1X → β−1P2 → β−1P1[1]
+1−−→ is collapsed by τ ′′. Similarly, we

can check that if the cyclic writing of β−1 ends in σ2 (respectively σX), then the second
(respectively third) triangle of T is collapsed by τ ′.

If τ ′′ is on-the-wall, then it is a limit of an on-the-wall stability condition. By continuity
of the masses, we still conclude that τ ′ = βτ ′′ collapses one of the triangles in T . □
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Recall that X ′ = P21.

Proposition 7.7. Consider the following collection of distinguished triangles:

T = {X → P2 → P1[1]
+1−−→, P2[−1] → P1 → X

+1−−→, X ′ → P1 → P2[1]
+1−−→}.

If τ is an on-the-wall standard stability condition, then no triangle in T is collapsed by τ .
Furthermore, if τ ′ is any stability condition such that no triangle in T is collapsed by τ ′,
then τ ′ is standard of type I, up to the action of C.

Proof. Analogous to the proof of Proposition 7.6. □

Proposition 7.8. The map m : Stab(C)/C → PS is a homeomorphism onto its image.

Proof. Proposition 6.14 shows that m is injective. Proposition 6.18 together with Proposi-
tion 7.6 and Proposition 7.7 shows that m is a local homeomorphism at a standard stability
condition of type I. Since every τ ∈ Stab(C)/C is in the braid group orbit of a standard
stability condition of type I, it follows that m is a local homeomorphism at every τ . As a
result, m is a homeomorphism onto its image. □

Recall that we have a surjective map B3 → PSL2(Z). We use the notation /± to denote
the quotient that identifies every element and its negative. Then we have the standard
action of PSL2(Z) on Z2/±. We thus get an action of B3 on Z2/±. As a result, Z2/±
becomes a Θ-set. Recall that we also have the Θ-representation M shown in Figure 3, and
hence the Θ-set M/±.

For each of the three states v of Θ, we define a linear map ϕv : Mv → Z2 as follows:

ϕ[P1,P2] : (1, 0) 7→ (1, 0) and (0, 1) 7→ (0, 1),

ϕ[P2,X] : (1, 0) 7→ (0, 1) and (0, 1) 7→ (1,−1),

ϕ[X,P1] : (1, 0) 7→ (1,−1) and (0, 1) 7→ (1, 0).

Proposition 7.9. The maps ϕv give an isomorphism of Θ-sets M/± → Z2/±.

Proof. All three maps ϕv are clearly bijective. It remains to check that they are Θ-
equivariant. That is, up to sign, for every edge e : v → w, we have

e ◦ ϕv = ϕw ◦M(e).

We omit this straightforward verification. □

Recall that we have a B3-equivariant map i : S → P1(Z) defined in (36). The following
proposition identifies i(s) explicitly in terms of the HN multiplicities.

Proposition 7.10. For a spherical object s supported at the state v, we have the equality

i(s) = ϕv(HNτ (s)) ∈ P1(Z).

Moreover ϕv(HNτ (s)) ∈ Z2/± is the unique representative of i(s) whose coordinates are
relatively prime.

Proof. The equation evidently holds for s = P1. If it holds for s supported at v, and
e : v → w is an edge of Θ with label β ∈ B3, then using the Θ-equivariance of i, ϕv, and
HNτ , we see that it also holds for βs. By Proposition 7.2, it holds for all spherical objects.

By Proposition 7.2, the vector HNτ (s) is obtained by applying a sequence of matrices in
Figure 3 to the vector (1, 0) or (0, 1). Since all these matrices have determinant 1, we see
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X = [−1 : 1]

P1 = [1 : 0]

P2 = [0 : 1]

Figure 5. The points P1, P2, and X = P21 divide P1(R) into three arcs.
The Harder–Narasimhan factors of an object only include the two endpoints
of the arc on which the object lies.

that the coordinates of HNτ (s) are relatively prime. Since the linear maps defining ϕ are
also of determinant ±1, the same is true for ϕv(HNτ (s)). □

By Proposition 7.2, the set S of spherical objects of C is the union of the three sets
supported at the three vertices of Θ. Under the map i : S → P1(Z), this division corresponds
to a geometric division of the circle P1(R), which we now describe. The three points
i(P1) = [1 : 0] and i(P2) = [0 : 1], and i(X) = [−1 : 1] divide P1(R) into three closed arcs
(see Figure 5). We denote these arcs by [P1, P2], [P2, X], and [X,P1].

Proposition 7.11. The map i sends the objects of S supported at the state [P1, P2] to the
arc [P1, P2] ⊂ P1(R), and likewise for the other two states.

Proof. By Proposition 7.10, the map i : S → P1(R) is equal to s 7→ ϕ(HNτ (s)). For s
supported at [P1, P2], the vector HNτ (s) lies in the non-negative cone in Z{P1,P2}, which is
mapped by ϕ[P1,P2] to the arc [P1, P2]. The argument for the other two states is similar. □

We now use our automaton to give a new and simpler proof of a theorem of Rouquier and
Zimmermann [28, Proposition 4.8]. This will be the content of Proposition 7.13. Rouquier
and Zimmermann work in the homotopy category of complexes of projective modules over
the zig-zag algebra, which is formally a different category from the 2CY category we study
in this section. As explained, e.g., in [2, §2.3.3], the effect of passing from their category to
ours is to collapse one grading. Since [28, Proposition 4.8] involves forgetting the grading,
Proposition 7.13 implies [28, Proposition 4.8].

To explain the argument in more detail, let us first introduce some basic notation.

Definition 7.12. Let x be an object of C belonging to the standard heart. The Jordan–
Hölder (JH) multiplicity of P1 (resp. P2) in x is the multiplicity of P1 (resp. P2) in any
Jordan–Hölder filtration of x. More generally, the JH multiplicity of Pi in an arbitrary x is
the sum of the JH multiplicities of Pi in each cohomology of x, where cohomology is taken
with respect to the t-structure whose heart is the standard heart.

Proposition 7.13. Let s be a spherical object with i(s) = [a : c] ∈ P1(Z), where a, c
are relatively prime integers. Then the JH multiplicities of P1 and P2 in s are |a| and |c|
respectively.
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Proof. Since the τ -HN filtration refines the cohomology filtration with respect to the stan-
dard heart, the JH multiplicities of P1 and P2 are linear functions of the τ -HN multiplicities.
Up to sign, these linear functions are precisely the maps ϕ in Proposition 7.9. The result
now follows by Proposition 7.10. □

The next proposition relates the JH multiplicities and the hom functionals. It is an
important tool for understanding the closure of the image of the mass map.

Proposition 7.14. Let x be a spherical object with i(x) = [a : c] ∈ P1(Z), where a, c are
relatively prime integers. Then hom(P2, x) = |a| and hom(P1, x) = |c|.

Proof. We prove the assertion for hom(x, P1). The other case follows by applying γ. It is
easy to check the result for x = P1, P2, and X by hand.

Fix a standard off-the-wall stability condition. By Proposition 7.13, |c| gives the JH-
multiplicity of P2, which is a linear function of the HN-multiplicities. The key idea is to
prove that hom(−, P1) is also a linear function of the HN-multiplicities. Then the cases
x = P1, P2, and X imply the result for all x.

We now prove the linearity. Begin with an object x supported at [P2, X]. Let

0 = x0 → · · · → xn = x.

be the HN filtration with factors zi = Cone(xi → xi+1). We must prove that

hom(P1, x) =
∑

hom(P1, zi).

Note that since neither x nor zi is a shift of P1, we have hom = hom.
Apply Hom(P1,−) to the HN filtration of x to get the following filtration in the bounded

derived category of graded vector spaces:

(40) 0 = Hom(P1, x0) → · · · → Hom(P1, xn) = Hom(P1, x).

The factors in (40) are Hom(P1, zi). We argue that the connecting map

Hom(P1, zi) → Hom(P1, xi[1])

vanishes. To see this, consider the map zi → xi[1]. It suffices to prove that for every HN
factor y of xi[1] and every map zi → y, the induced map

Hom(P1, zi) → Hom(P1, y)

vanishes. But the HN factors of xi[1] are simply zj [1] for j ≤ i. Using that both zi and zj
are shifts of P2 or X and that ϕ(zj) ≥ ϕ(zi), we see that (up to isomorphisms and shifts)
the only non-zero possibilities for zi → zj [1] are

P2 → P2[2], X → X[2], and P2 → X[2].

All three are killed by the functor Hom(P1,−).
Since the connecting maps in (40) vanish, we get

Hom(P1, x) ∼=
⊕

Hom(P1, zi),

and by taking dimensions

hom(P1, x) =
∑

hom(P1, zi).

We now treat the case of x supported at the other two states. Instead of directly proving
linearity, we argue using the group action. By Proposition 7.13, the JH multiplicities of P2

in x and σr
1x are equal. We also have

hom(x, P1) = hom(σr
1x, P1).
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Hence, the proposition for x implies the proposition for σr
1x. By Proposition 7.3, any x

supported at [X,P1] or [P1, P2] can be written as x = σr
1y for some r ∈ Z and y supported

at [P2, X]. Hence the proposition holds for x. □

Consider the action of B3 on R2/± via the homomorphism B3 → PSL2 Z. Let π : R
2 →

R be the second projection.

Proposition 7.15. Let β ∈ B3. Set s = βP1 and let x be any spherical object with
i(x) = [a : c], where a, c ∈ Z are relatively prime. Then

hom(s, x) = |π(β−1(a, c))|.
In particular, we have

hom(P1, x) = |c|, hom(P2, x) = |a|, hom(P21, x) = |a+ c|, and hom(P12, x) = |a− c|.

Proof. We have
hom(s, x) = hom(βP1, x) = hom(P1, β

−1x).

By Proposition 7.14, the last quantity is |π(β−1(a, c))|, as required. Taking β = 1, γ−1, σ2,
and σ−1

2 yield the four equations. □

We have a map h : S → PS defined by

h : x 7→ [hom(x,−)]

Consider S as a subset of P1(R) via the bijection i : S → P1(Z) as defined in (36).

Proposition 7.16. The map h : S → PS extends to a continuous map P1(R) → PS, which
is a homeomorphism onto its image.

Proof. For an s ∈ S, chose a βs ∈ B3 such that s = βsP1. Define h̃ : P1(R) → PS by

h̃ : [a : c] 7→
[∣∣π(β−1

s (a, c))
∣∣] .

Then h̃ is evidently continuous and by Proposition 7.15, it extends h.

We check that h̃ is a homeomorphism onto its image. Since the domain is compact and

the target is Hausdorff, it suffices to check that h̃ is injective. Consider the composition of

h̃ with the projection onto the homogenous coordinates corresponding to the objects P1, P2,
and P21. By Proposition 7.15, the composition is given by

[a : c] 7→ [|a| : |c| : |a+ c|].

This map is injective, and hence so is h̃. □

7.5. Gromov coordinates. Let τ be a stability condition of type I. Since the three positive
real numbers mτ (P1), mτ (P2), and mτ (X) satisfy the triangle inequalities, there exist non-
negative real numbers x, y, z such that

mτ (P1) = y + z, mτ (P2) = z + x, mτ (X) = x+ y.

We call the x, y, z, the Gromov coordinates of τ . Note that if τ is off-the-wall, then the
Gromov coordinates are all positive. In the closure Λ, one of the coordinates may be zero.
Two of the coordinates cannot be zero.

Recall that mτ : S → R is the mass function associated to τ and hom(s) the modified
hom functional associated to an object s.

Proposition 7.17 (Linearity). We have

mτ = xhom(P1) + y hom(P2) + z hom(X).
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Proof. Let s ∈ S be a spherical object. Suppose τ is off-the-wall. Observe that the HN
filtration of s is the same for all off-the-wall type I stability conditions, and its stable factors
are P1, P2, and X, up to shift. Denoting by a(s), b(s), and c(s) the multiplicities of these
three, we have

mτ (s) = (y + z)a(s) + (x+ z)b(s) + (x+ y)c(s).

In particular, mτ (s) is linear in the Gromov coordinates. Using Proposition 7.13 and Propo-
sition 7.14, we have

b(s) + c(s) = JH multiplicity of P2 in s = hom(P1, s), and

a(s) + c(s) = JH multiplicity of P1 in s = hom(P2, s).

By applying γ to the first equality, we get a(s) + b(s) = hom(X, s)x. It follows that

mτ (s) = xhom(P1, s) + y hom(P2, s) + z hom(X, s).

The case of a on-the-wall τ follows by continuity. □

Let τ be an arbitrary stability condition. Then there are three τ semi-stable objects, say
A, B, C, whose classes in the Grothendieck group are (up to sign) the classes of P1, P2, and
X. These are obtained simply by applying an appropriate braid to P1, P2, and X. Define
the Gromov coordinates x, y, z for τ by the condition

mτ (A) = y + z, mτ (B) = x+ z, mτ (C) = x+ y.

Then Proposition 7.17 implies that we have

mτ = xhom(A) + y hom(B) + z hom(C).

The Gromov coordinates give a nice geometric picture of Stab(C)/C ⊂ PS. Let ∆ denote
the following clipped triangle:

∆ = {(x, y, z) ∈ R3
≥0 | at least two coordinates non-zero}/R>0

∼= a closed planar triangle minus the three vertices.

Recall that Λ ⊂ Stab(C)/C is the closure of the set of type I stability conditions. We have
a homeomorphism ∆ → Λ ⊂ PS given by the Gromov coordinates:

(41) (x, y, z) 7→ x · hom(P1) + y · hom(P2) + z · hom(X).

Note that the homeomorphism extends to the closed (unclipped) triangle ∆, under which
the three vertices are mapped to the points h(P1), h(P2), and h(X). By applying the B3

action, we obtain the picture as shown in Figure 6.
Let us describe Figure 6 in more detail. Recall that the element γ = σ2σ1 generates the

stabiliser of Λ in PSL2(Z). So, we label the various (distinct) translates of Λ by ⟨γ⟩-cosets.
Two translates of Λ are either disjoint or intersect along an edge, which is a copy of the
open interval. The three translates that intersect Λ along its three edges are σ1Λ, σXΛ,
and σ2Λ. Consequently, the three translates that intersect βΛ are βσ1Λ, βσXΛ, and βσ2Λ.
We can encode the translates and their intersections in a graph (called the exchange graph
in [9]). Its vertices are left γ-cosets in PSL2(Z), and a coset β⟨γ⟩ is connected by an edge
with βσ1⟨γ⟩, βσX⟨γ⟩, and βσ2⟨γ⟩.

Remark 7.18. The complement of Λ in Stab(C)/C has three connected components. We
can describe these three components in two ways. For the first, write τ ′ in the complement
of Λ as τ ′ = βτ , where β ∈ B3 and τ ∈ Λ. Write β in a form recognised by the automa-
ton in Figure 3. Then the three components correspond to the three possible end states



42 ASILATA BAPAT, ANAND DEOPURKAR, AND ANTHONY M. LICATA

P1

P2X

Λ

σ1Λ

σ2Λ

σXΛ

σ2
1Λ

σ1σ2Λ

σ2
2Λσ2σXΛ

σ2
XΛ

σXσ1Λ

σ1

σX

σ2

σX

σ2

σ1

σ1

σX

σ2

σ1

σ2

σ1σX

σ2

σX

σ2

σ1

σX

Figure 6. The tiling of Stab(C)/C by the images Λ under the braid group.
The vertices of the triangles correspond to spherical objects.

of the automaton when it reads the writing of β. For the second, recall from the proof
of Proposition 7.6 that the three numbers

mτ ′(P1),mτ ′(P2), and mτ ′(X)

satisfy a collapsed triangle inequality—one is the sum of the other two. The three connected
components correspond to the ways in which the inequality collapses.

7.6. The closure. We know by Proposition 4.1 that the closure of Stab(C)/C in PS is
compact. Set

P = h(S) = h(P1(R)) ⊂ PS, and

M = m (Stab(C)/C) ⊂ PS.

The goal of Section 7.6 is to prove that M =M ∪ P .
Let

∆ =
(
R3

≥0 \0
)
/R>0 .

Then ∆ is homeomorphic to a closed triangle. An immediate consequence of the linearity
(from Proposition 7.17) is the following.
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Proposition 7.19 (Closure of Λ). The closure of Λ in PS is

Λ = Λ ∪
{
hom(P1),hom(P2),hom(X)

}
.

This closure is homeomorphic to ∆.

Proof. Identify Λ with ∆ using the Gromov coordinates as in (41). From Proposition 7.17,
we see that the map m : ∆ → PS extends to a continuous map ∆ → PS. Its image is closed,
and equals the union of Λ and the three additional points described above. The map from
∆ is injective, and hence an isomorphism onto its image. □

It is convenient to have a measure of closeness for two elements of a projective space.
Given two non-zero vectors in Rn for some positive integer n, denote by ∢(v, w) the (acute)
angle between them. By a slight abuse of notation, we use ∢(v, w) also for two points
v, w ∈ Pn−1; this is just the angle between any two representatives in Rn.

Given a finite subset T ⊂ S, let hT : S → PT be the composition of h : S → PS and the
projection onto the T -coordinates.

Proposition 7.20 (Group action contracts). Fix two elements x, y ∈ S and a finite subset
T ⊂ S. Given an ϵ > 0, for all but finitely many elements g of PSL2(Z), we have

∢(hT (gx), hT (gy)) < ϵ.

Proof. Recall the bijection i : S → P1(Z). Set a = i(x) and b = i(y). The map hT : P1(R) →
PT is continuous, and hence uniformly continuous. Therefore, it suffices to check that for
all but finitely many g, the angle between ga and gb in R2 is small. Let X be the matrix
with columns a and b. Then,

| sin (∢(ga, gb)) | = |det g| · | det(X)|
|ga| · |gb|

=
|det(X)|
|ga| · |gb|

.

Since g ∈ PSL2(Z) has integer entries, the quantity |ga| · |gb| is greater than ϵ−1|det(X)|
for all but finitely many g. The claim follows. □

Proposition 7.21 (Closure of M). The sets M and P are disjoint and their union is the
closure of M .

Proof. The mass of every object in a stability condition is positive. On the other hand,
hom(x, x) = 0, by definition. Therefore, M and P are disjoint.

By Proposition 7.19, we know that P is contained in the closure ofM . We now prove that
M ∪ P is closed. Let τn be a sequence in Stab(C)/C whose images m(τn) in M approach a
limit t ∈ PS. We must show that t lies in M ∪ P .

Write τn = βnτ
′
n, where βn is a braid and τ ′n ∈ Λ is a stability condition of type I. Let βn

be the image of βn in PSL2(Z). We have two possibilities: the set {βn} is finite or infinite.
If {βn} is finite, then the sequence {τn} is contained in the union of finitely many trans-

lates of the set of standard stability conditions Λ. By Proposition 7.19, the closure of Λ is
contained in M ∪ P . Hence, the closure of the union of finitely many translates of Λ is also
contained in M ∪ P . So the limit t lies in M ∪ P .

Suppose {βn} is infinite. Set an = βn(P1), bn = βn(P2), and cn = βn(X). Since P is
compact, we may assume, after passing to a subsequence if necessary, that h(an), h(bn),
and h(cn) have limits in P , say a, b, and c.

We first prove that a = b = c. To see this, let T ⊂ S be an arbitrary finite set, and use
the subscript T to denote projections to PT . It suffices to show that aT = bT = cT . Since
{βn} is infinite, by Proposition 7.20, we note that the angles between hT (an), hT (bn), and
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hT (cn) approach 0 as n approaches ∞. Therefore, the three sequences have the same limits.
But these limits are aT , bT , and cT .

Next, we claim that t = h(a) = h(b) = h(c). Indeed, by linearity (Proposition 7.17), we
know that there exist non-negative real numbers xn, yn, zn such that

mT (τn) = xnhT (An) + ynhT (Bn) + znhT (Cn).

Taking the limit as n→ ∞ in projective space yields

t = h(a) = h(b) = h(c).

In particular, t lies in M ∪ P . The proof is thus complete. □

7.7. Homeomorphism to the closed disk. We take up the final part of the main theo-
rem, namely that (M,P ) is a manifold with boundary homeomorphic to the unit disk. We
explicitly construct a homeomorphism from M to the disk, using the unprojectivised, but
suitably normalised, mass and hom functions.

Fix

T = {P1, P2, X = P21}.
Define a map

µ : Stab(C)/iR → RT = R3

by

µ : τ 7→ (mτ (P1),mτ (P2),mτ (X)).

Similarly, define

η : S → RT = R3

by

η(s) = (hom(s, P1),hom(s, P2),hom(s,X)).

Thinking of S as P1(Z) ⊂ P1(R), it is easy to see that η extends to a continuous map

η : P1(R) → R3 .

Indeed, using Proposition 7.15, we get

η : [a : c] 7→ (|c|, |a|, |a+ c|).

Let τ be a stability condition with (semi)-stable objects A, B, and C of class [P1], [P2],
and [X] in the Grothendieck group. Let x, y, z be the Gromov coordinates of τ , namely
the non-negative real numbers such that

mτ (A) = y + z, mτ (B) = z + x, mτ (C) = x+ y.

Denote by | − | the standard Euclidean norm in R3. We say that τ is normalised if

(42) x|η(A)|+ y|η(B)|+ z|η(C)| = 1.

Remark 7.22. We point out one subtle aspect of the definition. If τ is on-the-wall, then one
of the A, B, or C is not uniquely determined (even up to shift), since on-the-wall stability
conditions have non-isomorphic semistable objects with the same class in the Grothendieck
group. In this case, however, the corresponding Gromov coordinate is 0, and hence (42)
holds for every possible A,B,C.
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The normalisation yields a continuous section of

Stab(C)/iR → Stab(C)/C.
That is, for every stability condition τ up to rotation and scaling, there is a unique nor-
malised stability condition τν up to rotation, and furthermore the map τ → τν is continuous.

We now identify Stab(C)/C with its image M in PS and P1(R) with its image P in PS.
Define

(43) π : M =M ∪ P → R3

as follows. For τ ∈M , set

(44) π(τ) = µ(τν),

and for s ∈ P , set
π(s) = η(s)/|η(s)|.

By construction, π(a : c) is the unit vector in the direction of

η(a : c) = (|a|, |c|, |a+ c|).
That is, π maps P to the unit sphere in R3. It is easy to see that π|P is injective, and hence
a homeomorphism onto its image. The image consists of three circular arcs, one for each
pair of end-points from the three points

1√
2
(0, 1, 1),

1√
2
(1, 0, 1), and

1√
2
(1, 1, 0).

The arc joining each pair is a geodesic arc on the unit sphere; that is, the plane it spans
passes through the origin.

Equation (42) and the triangle inequality imply that for every stability condition τ , we
have |π(τ)| ≤ 1. In fact, for every stability condition, at least two of the Gromov coordinates
are non-zero. Therefore, we actually have a strict inequality |π(τ)| < 1.

To get a better understanding of π, let us study it on the translates of the fundamental
domain Λ. Let β be a braid. Consider the translate βΛ. Set

A = β(P1), B = β(P2), C = β(X).

These are the (semi)-stable objects for the stability conditions in βΛ. Recall that βΛ is
homeomorphic to the projectivised octant ∆ =

(
R3

≥0 \0
)
/R>0; the homeomorphism is

given by the Gromov coordinates. The normalisation condition (42) is a linear condition
on the Gromov coordinates. It cuts out an affine hyperplane slice of the octant, and gives
a section of the projectivisation map. Since π is linear in the Gromov coordinates for
normalised stability conditions, it maps βΛ linearly, and homeomorphically, onto the triangle
in R3 with vertices π(A), π(B), and π(C).

Let Φ ⊂ R3 be the union of the triangle

{(x, y, z) | x+ y + z =
√
2, x+ y − z ≥ 0, y + z − x ≥ 0, z + x− y ≥ 0},

and the three circular segments, each bounded by an edge of the triangle above and the arc
in the image of π(P ) with the same end-points as the edge (see Figure 7).

Observe that π maps Λ, the triangle formed by the standard stability conditions, to the
central triangle of Φ. On the other hand, the translates of Λ on the three sides of the identity
on the exchange graph (Figure 6) are mapped to the three circular segments. Indeed, the
segment to which π sends a non-standard stability condition τ depends on how the triangle
inequality collapses among the τ -masses of P1, P2, and X, and this in turn, is determined
by where τ lies on the exchange graph.
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x
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z

Figure 7. The homeomorphic image Φ ⊂ R3 of the compactified stability
manifold.

Proposition 7.23. The map π : M → Φ is a homeomorphism, where M is given the
subspace topology from PS.

Proof. Let us first show that π is continuous. Since π is linear on the translates of Λ, and
these translates cover M , it follows that π is continuous on M . The restriction of π to P is
given by

π : [a : c] 7→ 1√
a2 + c2 + (a+ c)2

(|a|, |c|, |a+ c|) ,

which is continuous. We must show that π is continuous on M at a point p ∈ P .
Let τn be a sequence of normalised stability conditions converging to p ∈ P . We already

know that mT (τn) converges to hT (p) in the projective space PT . Therefore, it suffices to
show that π(τn) approaches a vector of norm 1 in R3.

Let ϵ > 0 be given. Write τn = βnτ
′
n for some braid βn and standard stability condition

τn. Denote by βn the image of βn in PSL2(Z). If the set {βn} is finite, then the sequence
τn lies in finitely many translates of Λ. Without loss of generality, we may assume that it
lies in one translate, say βΛ. Recall that π : βΛ → R3 is linear in the Gromov coordinates
and hence continuous. Therefore, π(τn) → π(p) as n→ ∞.

The harder case is when the set {βn} is infinite. Set An = βn(P1), Bn = βn(P2),
Cn = βn(X), and let xn, yn, zn be the Gromov coordinates. But in this case, we know
by Proposition 7.20 that the angle between η(An), η(Bn), and η(Cn) approaches 0 as n
approaches ∞. Therefore, the difference between

|xnη(An) + ynη(Bn) + znη(Cn)| and xn|η(An)|+ yn|η(Bn)|+ zn|η(Cn)|
approaches 0 as n approaches ∞. Since τn is normalised, the right-hand quantity is 1, and
the left-hand quantity is |π(τn)|.

We have now proved that π : M → Φ is continuous. Since M is compact, π is a homeo-
morphism once we know that it is a bijection. We know that the map

π : P → ∂Φ = Φ ∩ {v | |v| = 1}
is a bijection and π maps M to

Φ◦ = Φ ∩ {v | |v| < 1}.
Recall that M is the union of the translates of the fundamental domains βΛ, and each
fundamental domain is homeomorphic to a clipped triangle (a planar triangle minus the
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vertices). The map π maps each translate bijectively to a (clipped) triangle in Φ◦. To check
that π is an injection, we must check that the clipped triangles π(βΛ) have disjoint interiors,
and two of them, say π(βΛ) and π(β′Λ), intersect along an edge if and only if β and β′ are
adjacent in the exchange graph. To check that π is a surjection, we must check that the
union

⋃
β π(βΛ) is Φ

◦.

Take β = id. Then π(Λ) is the central triangle of Φ◦. The only other triangles that
intersect this triangle are π(σ1Λ), π(σ2Λ), and π(σXΛ), and the intersections are along the
three edges, as required.

The exchange graph divides the non-trivial translates of Λ into three connected compo-
nents, and the translates in each of the three components map to the three distinct circular
segments in Φ◦. So it suffices to restrict our attention to one component and the corre-
sponding circular segment. Since γ permutes the components, it suffices to look at only one
of them.

Let us consider the component containing σ1Λ. The translates in this component are AΛ
where A ∈ PSL2(Z) is a matrix that has a cyclic writing (as in Proposition 7.2) that starts

with σ1. Suppose A =

(
a b
c d

)
. Then π(AΛ) is the clipped triangle with vertices

(45) π([a : c]), π([b : d]), π([a− b : c− d]).

Since we are considering the translates in the σ1Λ component, the points [a : c], [b : d],
and [a − b : c − d] lie in the arc [P1, P2] of P1(Z) ⊂ P1(R). (So, under the bijection
P1(Z) = Q∪{∞} given by [a : c] → a/c, they correspond to Q≥0 ∪{∞}). By construction,
the points π([a : c]) and π([b : d]) form an edge of a clipped triangle if and only if |ad−bc| = 1.
Thus, the triangles (45) form the Farey tiling [5, Chapter 8] of the circular segment, which
has the intersection properties as dictated by the exchange graph. □

8. The Â1 case

The aim of this section is to construct the Thurston compactification at q = 1 of stability

space for the 2-Calabi–Yau category CΓ where Γ is the Â1 graph.

8.1. The 2-Calabi–Yau category of type Â1. Since the Â1 graph is not simply-laced,
some mild modifications of the definitions from Section 6 are required in order to define the
associated zigzag algebra and 2-Calabi–Yau category. We give the precise definitions here.

8.1.1. The Coxeter system of type Â1. Let Γ be the Dynkin diagram of type Â1, which has
two vertices, called 0 and 1, and two (unoriented) edges connecting them.

0 1

Definition 8.1. The Artin–Tits braid group associated to Γ is the free group on two letters
F2:

BΓ
∼= F2 = ⟨σ0, σ1⟩.

Definition 8.2. The Coxeter group associated to Γ is isomorphic to the quotient of BΓ by
the relations

σ2
0 = σ2

1 = 1.

We denote this group by WΓ, and denote the images of σi in WΓ by si.
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Let VΓ be the rank two Z-module with basis vectors vi indexed by the vertices of Γ.
Define a bilinear form on VΓ by the following formula:

⟨vi, vj⟩ =

{
2 i = j,

−2 i ̸= j.

Definition 8.3. The standard representation of WΓ is the action on VΓ defined by the
formula

si(vj) = vj − ⟨vi, vj⟩vi.

8.1.2. The zigzag algebra of type Â1. Let Γdbl denote the doubled quiver of Γ. If the two
edges of Γ are denoted e and f , then there are four oriented edges denoted e01, e10, f01, f10 in
Γdbl, where the subscript ij means that the arrow points from i to j. Fix a sign sij ∈ {±1}
for each arrow eij , and a sign tij ∈ {±1} for each arrow fij , such that sij = −sji and
tij = −tji.

0 1

e01

f01

e10

f10

The zigzag algebra is the quotient of the path algebra Path(Γdbl) by the two-sided ideal
generated by

(1) the elements eijfji and fijeji, for i ̸= j, and
(2) the elements

sijeijeji − tijfijfji,

for i ̸= j.

The algebras corresponding to the two kinds of sign choices sij = tij and sij = −tij are
isomorphic, as was the case in simply laced type.

8.1.3. The 2-Calabi–Yau category of type Â1. The strongly 2-Calabi–Yau category associ-

ated to the Â1 quiver, which we denote as C in what follows, is now defined exactly as in

simply-laced type in Section 6, using the above Â1 zigzag algebra. The category C is a
graded, k-linear triangulated category classically generated by two spherical objects, which
we denote P0 and P1. The hom spaces between these generators are given as follows:

Hom•(Pi, Pi[n]) =

{
k if n = 0 or n = 2,

0 otherwise;

Hom•(Pi, Pj [n]) =

{
k2 if n = 1 and i ̸= j,

0 otherwise, for i ̸= j.

The extension closure of P0 and P1 in C is an abelian category; it is the heart of a (bounded)
t-structure. We refer to it as the standard heart ♡std.

8.2. The spherical objects and the boundary circle. Denoting the twist in Pi as σPi
,

we have a weak action of BΓ
∼= F2 on C given by

σi → σPi .

The image of BΓ in Aut(C) is precisely the subgroup generated by the spherical twists σP0

and σP1
. It is not difficult to check directly, via e.g. a ping-pong argument, that the action

of BΓ on C is faithful, so we can regard BΓ as a subgroup of Aut(C).
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Set γ = σ1σ0. One can check that for any integer n, the object σ1γ
n(P0) is the cone of a

morphism from a direct sum of |2n+2| copies of P1 to a direct sum of |2n+1| copies of P0.
Similarly, the object γnP1 is the cone of a morphism from a direct sum of |2n+1| copies of
P1 to a direct sum of |2n| copies of P0. For this reason, we adopt the following notation for
these objects:

σ1γ
n(P0) = |2n+ 2|P1 → |2n+ 1|P0, and

γnP1 = |2n+ 1|P1 → |2n|P0.

The objects obtained as above are all spherical, and their union consists of each of the
objects nP1 → (n± 1)P0 exactly once, as n ranges over the integers. This set is in bijection
with Z via the assignment

Pn = |n|P1 → |n− 1|P0 for n ∈ Z.

The objects Pn fit into distinguished triangles as follows:

P2i+1[−1] → P2i ⊕ P2i → P2i−1
+1−−→,

P2i+2 → P2i+1 ⊕ P2i+1 → P2i[1]
+−→ .

(46)

Regard Z as the subset of P1(Z) consisting of points of the form [k : 1]. We can write a
homomorphism BΓ → PSL2(Z), as follows:

(47) σ0 7→
(
1 0
2 1

)
, σ1 7→

(
−3 2
−2 1

)
.

Let S be the set of all spherical objects, up to shift, that are stable with respect to
some stability condition in Stab◦(C). It can be checked, for example using the explicit
construction of spherical stable objects in [2, § 4], that S is the BΓ orbit of {P0, P1}. We
have a BΓ-equivariant map i : S → P1(Z) characterised by Pn 7→ [n : 1]. It is easy to check
that i is injective. For convenience, let P∞ be any one of the indecomposable extensions of
P0 by P1. We extend the embedding above to S ∪ {P∞} by sending P∞ to [1 : 0], which is
the point at infinity.

The element γ = σ1σ0 acts on the objects Pn by an infinite-order cyclic rotation by two
steps, lowering the phases. More precisely,

γ : Pn 7→ Pn+2 for n ̸= 0,−1,∞,

γ : Pn 7→ Pn+2[−1] for n = 0,−1,

γ : P∞ 7→ P∞.

For each k ∈ Z, set
σ2k = γkσ0γ

−k and σ2k+1 = γkσ1γ
−k.

It is easy to see that the image of σk in Aut(C) is the spherical twist in the object Pk. The
image of σk in PSL2(Z) is given by

(48) σk 7→
(
2k + 1 −2k2

2 −2k + 1

)
.

8.3. Standard stability conditions. We say that a stability condition τ is standard if its
heart ♡([0, 1)) is the standard heart ♡std. Let ϕ denote the phase function for τ . Then we
either have ϕ(P0) ≤ ϕ(P1) or ϕ(P1) ≤ ϕ(P0). In the first case, we say τ is standard of type
I, and in the latter case, of type II. Note that, in type I, all objects Pn are τ -semistable.

Let Λ ⊂ Stab(C)/C be the closure of the set of standard stability conditions of type I.
Then Λ includes non-standard stability conditions where ϕ(P1) = ϕ(P0)+1. We continue to
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call these stability conditions as of type I, reserving the adjective standard for those where
ϕ(P1) < ϕ(P0) + 1. Figure 8 shows the central charges of the objects Pn in a standard
off-the-wall stability condition of type I. The dotted line is the direction of the sum of the
central charges of P0 and P1, which is also the central charge of P∞.

P0

P1

P2

P3

· · ·

P∞

. . .
P−1

P−2

Figure 8. The central charges of the objects of T in a standard off-the-
wall stability condition of type I.

8.4. The automaton. Fix an off-the-wall stability condition τ of type I. Recall that Σ is
the set of indecomposable τ -semi-stable objects in the standard heart, which contains Pn

for n ∈ Z as well as the objects P∞. Figure 9 describes a τ -HN-automaton Θ by illustrating
the incoming and outgoing edges at one of the vertices.

Here is a more formal description of the automaton, following Definition 5.3.

(1) We have a BΓ-labelled graph with vertices indexed by Z and edges as indicated
in Figure 9: an edge from state k to state j labelled σj = σPj

(unless j = k + 1);
an edge from state k to state (k + 2) labelled γ; and an edge from state k to state
(k − 2) labelled γ−1.

(2) The kth state is labelled [Pk, Pk+1]. The set S[Pk,Pk+1] consists of the spherical
objects of C whose HN factors are shifts of Pk and Pk+1.

(3) The representation M associates the free abelian group ZΣ to each state. However,
as we show in Proposition 8.4, the image of the HN multiplicity map from S to
M will only be supported on the sub-representation that assigns Z{Pk,Pk+1} to the
state labelled as [Pk, Pk+1]. So we simplify notation by setting M to be this sub-
representation. The map associated to the edge σj : k → j is represented by the
2× 2 matrix

(49)

(
|j − k − 1| |j − k − 2|
|j − k| |j − k − 1|

)
in the standard bases. The maps associated to the edges labelled γ± are represented
by the identity matrix.

Proposition 8.4 shows that the description above fits into the framework of Definition 5.3.
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[Pk, Pk+1]

[Pk−1, Pk]

[Pk−2, Pk−1]

[Pk−3, Pk−2]

[Pk+1, Pk+2]

[Pk+2, Pk+3]

[Pk+3, Pk+4]

σk

σ
k−

1

σ
k−

2

σ
k
−

3

σ k
+
2

σ
k
+
3

γ
γ −

1

Figure 9. An HN automaton for an off-the-wall type I stability condition

for Â1, showing the outgoing edges from [Pk, Pk+1].

Proposition 8.4. Let e : [Pk, Pk+1] → [Pj , Pj+1] be an edge of the automaton. Let x ∈ C
be an object whose HN filtration consists of shifts of Pk and Pk+1.

(1) The HN filtration of e · x consists of shifts of Pj and Pj+1.
(2) The following diagram commutes.

x HNτ (x) ∈ Z{Pk,Pk+1}

e · x HNτ (e · x) ∈ Z{Pj ,Pj+1}

HNτ

e M(e)

HNτ

In other words,
HNτ (e · x) =M(e) ·HNτ (x).

Proof. By an argument similar to Proposition 7.1, the image under e of the HN filtration
of x is rectifiable. So it suffices to prove the proposition for x = Pk and x = Pk+1.

Suppose e = γ± so that j = k ± 2. Since γ± sends Pi to Pi±2 (up to shift), preserving
the ordering of the phases, it is clear that e · x is supported at [Pj , Pj+1], and that the HN
multiplicities transform by the identity matrix.

Otherwise, e = σj . Suppose that k = 0. We can check explicitly that if j ̸= 1, we have

σjP0 = P
⊕|j−1|
j [−1] → P

⊕|j|
j+1 , and

σjP1 = P
⊕|j−2|
j [−1] → P

⊕|j−1|
j+1 .

(50)

As a result, both σj(P0) and σj(P1) are both supported at state j and their HN multiplicities
transform according to the matrix M(e).
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Let k be arbitrary. Observe that we have

σj(Pk) =

{
γmσj−2mP0, if k = 2m is even,

γmσj−2mP1, if k = 2m+ 1 is odd.

Using the above, we see that for any k except k = j − 1, we have

(51) σjPk = P
⊕|j−k−1|
j [−1] → P

⊕|j−k|
j+1 .

As a result, σPk and σPk+1 are both supported at state j and their HN multiplicities
transform according to the matrix M(e). □

The next proposition shows that the automaton recognises every braid and every object
of S.

Proposition 8.5. Let β ∈ F2 and let s ∈ S be arbitrary.

(1) The automaton in Figure 9 recognises β. More precisely, β has the recognised ex-
pression

β = γnσa1
σa2

. . . σak
,

such that ai − ai+1 ̸= 1 for each i.
(2) The automaton in Figure 9 recognises s.
(3) The τ -HN filtration of s consists of at most two objects out of T , up to shift.

Proof. For (1), first write β as any expression in the generators {σ±1
0 , σ±1

1 }. For any i ∈ Z,
we have

σ−1
i = σi−1γ

−1, γ−1σi = σi−2γ
−1, γ = σiσi−1.

Using these relations, we first rewrite β solely in terms of the elements σi for i ∈ Z and γ±.
Then we successively replace any instances of σiσi−1 by γ, and commute all powers of γ to
the left. This process terminates, resulting in an expression of the desired form.

For (2), write s = βPi where i is either 0 or 1. Assume that i = 0; the other case is
similar. Rewrite

β = γnσa1σa2 . . . σak

as in (1). Note that the object P0 is supported at two states, namely [P0, P1] and [P−1, P0].
We can apply σak

at least at one of these two states. From the condition on our recognised
expression, it is clear that all subsequent letters are applicable. To finish, any power of γ is
applicable at any vertex. Therefore s is recognised by the automaton.

Finally, (3) follows from (2) and from Proposition 8.4 □

Proposition 8.6. Let x be a spherical object of C supported at the state [Pk, Pk+1]. Assume
that x is not a shift of Pk or Pk+1. Then

(1) we can write s = σr
kt for some r > 0 and an object t supported at [Pk+1, Pk+2];

(2) we can write s = σ−r
k+1t for some r > 0 and an object t supported at [Pk−1, Pk].

Proof. Analogous to the proof of Proposition 7.3. □

Remark 8.7. Let τ be an on-the-wall standard stability condition. Set P ′
i to be the object

σ0Pi−1. The objects P ′
i are also semistable in τ , in addition to the objects Pi. Note that

up to shift, we have P ′
1 = P0 and P ′

0 = P1. Recall that γ = σ1σ0. Let γ
′ = σ0σ1.
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Figure 10 shows an automaton that computes τ -HN multiplicities. Only the outgoing
arrows labelled σ0 and σ1 are depicted. The remaining possible labels for outgoing arrows
are γ± and γ′±, which act as follows:

γ : [Pi, Pi+1] → [Pi+2, Pi+3] unless i = −2, γ : [P ′
i , P

′
i+1] → [P1, P2];

γ−1 : [Pi, Pi+1] → [Pi−2, Pi−3], unless i = 2, γ−1 : [P ′
i , P

′
i+1] → [P−2, P−1];

γ′ : [P ′
i , P

′
i+1] → [P ′

i+2, P
′
i+3] unless i = −2, γ′ : [Pi, Pi+1] → [P ′

1, P
′
2];

γ′−1 : [P ′
i , P

′
i+1] → [P ′

i−2, P
′
i−3] unless i = 2, γ′−1 : [Pi, Pi+1] → [P ′

−2, P
′
−1].

Since Θ suffices for mass computations, we omit further details.

[P−1, P0] [P−2, P−1] · · · · · · [P2, P3] [P1, P2]

[P ′
−1, P

′
0] [P ′

−2, P
′
−1] · · · · · · [P ′

2, P
′
3] [P ′

1, P
′
2]

σ1

σ0

σ0

σ0

σ 0 σ 0σ
0

σ0

σ1

σ1

σ1

σ
1

σ
1

σ
1

Figure 10. An HN automaton for an on-the-wall standard stability con-
dition, depicting outgoing arrows labelled σ0 and σ1.

8.5. Consequences of the automaton. In this section, we use the automaton from Sec-
tion 8.4 to prove results about our projective embedding of Stab(C)/C. We have the fol-
lowing analogue of Proposition 7.6.

Proposition 8.8. Consider the following distinguished triangles:

P1[−1] → P0 ⊕ P0 → P−1
+1−−→ and P3[−1] → P2 ⊕ P2 → P1

+1−−→ .

If τ is a standard stability condition of type I, then neither of the above triangles is collapsed
by τ in the sense of Definition 6.17. Furthermore, if τ ′ is any stability condition such that
neither of the above triangles is collapsed by τ ′, then τ ′ is standard of type I up to the action
of C.

Proof. It is immediate from Proposition 3.3 that neither of the above triangles is collapsed by
any standard stability condition of type I. Now let τ ′ be any stability condition. Recall that
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τ ′ is in the braid group orbit of a standard stability condition of type I. Write τ ′ = βτ ′′ for
some braid β and some standard stability condition τ ′′. As in the proof of Proposition 7.6,
we may assume that τ ′′ is off-the-wall; otherwise the result follows by continuity.

If β is a power of γ, then τ ′ is already standard of type I up to the action of C. Otherwise,
we show that one of the two triangles above is collapsed by τ ′. Equivalently, we show that
β−1 applied to one of the two triangles above is collapsed by τ ′′.

Consider a recognised expression of β−1 as described in Proposition 8.5. Since β is not
a power of γ, this expression ends in σi for some i ∈ Z. We observe using the automaton
in Figure 9, analogous to the argument in the proof of Proposition 7.6 that the first triangle
is collapsed by τ ′ if i ̸= 0, 1. Otherwise, the second triangle is collapsed by τ ′. We omit the
details. □

Proposition 8.9. The map m : Stab(C)/C → PS is a homeomorphism onto its image.

Proof. The proof is analogous to the proof of Proposition 7.8, using the result of Proposi-
tion 8.8. □

Recall that we set M to be the Θ-representation that associates the free abelian group
Z{Pk,Pk+1} to the state [Pk, Pk+1]. As in the A2-case, the Θ-set M/± isomorphic to Z2/±
with the standard action of PSL2(Z), as follows. Corresponding to each state [k, k + 1] of
Θ, we define a linear map ϕk : M[k,k+1] → Z2 by

ϕk : (1, 0) 7→ (k, 1), (0, 1) 7→ (k + 1, 1).

Proposition 8.10. The maps ϕk give an isomorphism of Θ-sets M/± → Z2/±.

Proof. Let us check that ϕ is Θ-equivariant. It is evident that ϕk intertwines the edges
labelled γ±. To check that it also intertwines σj : k → j, we must check that

σj ◦ ϕk = ϕj ◦M(e).

Recalling the matrix of σPj from (48) and M(e) from (49), we must check(
2j + 1 −2j2

2 −2j + 1

)(
k k + 1
1 1

)
= ±

(
j − k − 1 j − k − 2
j − k j − k − 1

)(
j j + 1
1 1

)
.

This is straightforward. □

Recall that we have a BΓ-equivariant map i : S → P1(Z). The following proposition
identifies i(s) explicitly in terms of the HN multiplicities.

Proposition 8.11. For a spherical object s supported at the kth state, we have the equality

i(s) = ϕk(HNτ (s)) ∈ P1(Z).

Moreover, ϕk(HNτ (s)) ∈ Z2/± is the unique representative of i(s) whose coordinates are
relatively prime.

Proof. Analogous to the proof of Proposition 7.10 □

The division of S according to the HN support corresponds nicely to a geometric division
of the circle P1(R), which we now describe. The objects Pi divide P1(R) into a collection
of closed arcs, namely {[Pi, Pi+1] | i ∈ Z}. Together with P∞, these arcs cover all of P1(R).
We show that this decomposition of the circle is compatible with the automaton.
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Proposition 8.12. For each i ∈ Z, the objects supported at state i are mapped to the arc
[Pi, Pi+1].

Proof. Analogous to the proof of Proposition 7.11. □

As a consequence of the automaton, we also obtain a Rouquier–Zimmermann–type theo-

rem for Â1. Just as in type A2, this theorem relates the parametrization of rational points
[a : c] ∈ P1(Z) with Jordan–Hölder multiplicities of the corresponding spherical object.

Recall the notion of Jordan–Hölder (or JH) multiplicity from Definition 7.12. We use the

same definition for the Â1 category, with respect to the standard heart.

Proposition 8.13. Let x ∈ S such that i(x) = [a : c] ∈ P1(Z), with a and c relatively
prime integers. Then the JH multiplicities of P0 and P1 in x are exactly |a − c| and |a|
respectively.

Proof. Analogous to the proof of Proposition 7.13, using the result of Proposition 8.10 in
lieu of Proposition 7.9. □

For future use (see Proposition 8.16), we also prove the following statement, which com-
putes values of the hom function of a spherical object from the JH multiplicities of P0 and
P1 in that object.

Proposition 8.14. Let x ∈ S such that the JH multiplicities of P0 and P1 in x are n0 and
n1 respectively. Then hom(x, P1) = 2n0 and hom(x, P0) = 2n1.

Proof. We prove the assertion for hom(x, P1). The proof for hom(x, P0) is similar. We can
compute directly from the definitions that hom(P1, Pk) = 2|k − 1| for each k ∈ Z.

Fix a standard off-the-wall stability condition of type I. The key idea, as in the proof
of Proposition 7.14, is to prove that hom(−, P1) is a linear function of the HN multiplicities.
Then the cases x = Pi imply the result for all x.

Suppose that x is supported at [Pk, Pk+1] for k ̸= 0, 1. Consider the Harder–Narasimhan
filtration of x:

0 = x0 → x1 → · · · → xn = x,

with factors zi = Cone(xi → xi+1). Each zi is either Pk or Pk+1, up to shift.
By applying Hom(P1,−), we obtain the following filtration in the bounded derived cate-

gory of graded vector spaces:

(52) 0 = Hom(P1, x0) → · · · → Hom(P1, xn) = Hom(P1, x).

As in the first case in the proof of Proposition 7.14, we obtain

Hom(P1, x) =
⊕

Hom(P1, zi).

We now treat the cases where x is supported either at [P0, P1] or at [P1, P2]. By Propo-
sition 8.13, the JH multiplicities of P0 in the objects x and σr

1x are equal, and both also
have the same value for hom(−, P1). Hence the proposition for x implies the proposition for
σr
1x. By Proposition 8.6, any x supported either at [P0, P1] or [P1, P2] can be rewritten as
x = σr

1y for some r ∈ Z and y supported at [Pk, Pk+1] for k ̸= 0, 1. Hence the proposition
holds for x. □
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8.6. Gromov coordinates.

Definition 8.15 (Gromov coordinates). Let τ be a stability condition of type I. For each
integer i ∈ Z, let xi(τ) be the rational number defined as follows:

xi(τ) =
mτ (Pi−1) +mτ (Pi+1)− 2mτ (Pi)

2
.

We call the numbers (xi(τ)) the Gromov coordinates of τ .

Using the triangle inequality (Proposition 3.1) on the triangles (46), we deduce that all
Gromov coordinates of τ are non-negative. If τ is off-the-wall, they are all positive.

Proposition 8.16 (Linearity). Let τ be a stability condition of type I with Gromov coordi-
nates (xi). For any object X ∈ S, we have

(53) mτ (X) =
1

2

∑
i∈Z

xi hom(Pi, X).

Proof. Recall that for any i ∈ Z, we have

P2i = γiP0, P2i+1 = γiP1.

Therefore, we get

hom(P2i, X) = hom(P0, γ
−iX), hom(P2i+1, X) = hom(P1, γ

−iX).

Proposition 8.14 allows us to compute hom(P0, γ
−iX) and hom(P1, γ

−iX) from the HN
multiplicities of γ−iX. In turn, the automaton in Figure 9 allows us to compute the HN
multiplicities of γ−iX from the HN multiplicities of X. Suppose X is supported at the kth
state of the automaton. Suppose the HN filtration of X consists of α copies of Pk and β
copies of Pk+1, up to shift. Then γ−iX is supported on the (k − 2i)th state, and its HN
filtration contains α copies of Pk−2i and β copies of Pk+1−2i. In particular, for any i ∈ Z,
the JH multiplicities of P1 and P0 in γ−iX are exactly

(α|k − 2i|+ β|k − 2i+ 1|) and (α|k − 2i− 1|+ β|k − 2i|)
respectively. Using Proposition 8.14, we deduce that for any j ∈ Z, we have

(54) hom(Pj , X) = 2 (α|k − j|+ β|k − j + 1|) .
Substitute

xi =
mτ (Pi−1) +mτ (Pi+1)− 2mτ (Pi)

2
in

1

2

∑
i∈Z

xi hom(Pi, X).

Then the coefficient of mτ (Pj) is exactly

hom(Pj−1, X) + hom(Pj+1, X)− 2 hom(Pj , X)

4
.

Using (54), we see that the expression above equals α if j = k, is β if j = k + 1, and is 0
otherwise. Therefore we see that

1

2

∑
i∈Z

xi hom(Pi, X) = α ·mτ (Pk) + β ·mτ (Pk+1),

which is precisely the τ -mass of X. □
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Recall that Λ is the closure in Stab(C)/C of the image of the standard off-the-wall type
I stability conditions. We now study the topology of Λ, and compute the closure of m(Λ)
in PS.

Proposition 8.17. Let H be the closed upper half plane. Consider the subset

L = {−1} ∪
{
1− n

n
| n ∈ Z \ 0

}
.

Then the map

τ 7→ Zτ (P1)

Zτ (P0)

is a homeomorphism of Λ onto H \ L.

Proof. The map is clearly continuous. We first show that its image lies in H\L. Recall that
Λ is the closure of off-the-wall stability conditions of type I (up to the C-action). These are
stability conditions in which P0 and P1 are stable and satisfy the phase inequalities

ϕ(P0) < ϕ(P1) < ϕ(P0) + 1.

It follows that for any point τ ∈ Λ the quantity ωτ = Zτ (P1)/Zτ (P0) lies in the closed upper
half plane. To see why ωτ avoids L, note that the objects Pn are τ -semi-stable for each
n ∈ Z as well as n = ∞. Therefore, we must have Zτ (Pn) ̸= 0 for n ∈ Z ∪ {∞}. Since

[Pn] = |n|[P1] + |n− 1|[P0] and [P∞] = [P0] + [P1],

it is clear that ωτ /∈ L.
Now fix some ω ∈ H \ L. We now prove that there is a unique τ ∈ Λ with ω =

Zτ (P1)/Zτ (P0). Consider the central charge Z : K(C) → C defined as

Z(P0) = 1, Z(P1) = ω.

Recall from [8, Proposition 5.3] that a stability condition is uniquely specified by choosing:

(a) the heart of a bounded t-structure; and
(b) a central charge that sends the heart to the semi-closed upper half plane H∪R>0 with

the Harder–Narasimhan property.

The standard heart on C is the extension closure of P0 and P1. Being a finite-length category,
any central charge as above with respect to the standard heart automatically enjoys the
Harder–Narasimhan property. Thus if ω lies in the semi-closed upper half plane, the central
charge above uniquely specifies a type I standard stability condition.

We now treat the remaining cases; namely those where ω lies on the negative real axis. In
this case we can no longer use the standard heart for our reconstruction, because the central
charge function does not land in the semi-closed upper half plane. We will show nevertheless
that we can uniquely reconstruct points of Λ in these cases using tilts of the standard heart.
These tilts will also be finite-length categories for which the Harder–Narasimhan property
is automatic.

The set R \ L is a disjoint union of open intervals of two kinds:

R \ L =
⋃
n≥0

(
− n

n+ 1
,−n− 1

n

)
∪

⋃
n≥0

(
−n+ 1

n
,−n+ 2

n+ 1

)
.

The tilt we choose will depend on the interval that contains ω. Regard (0,∞) as an interval
of the first kind at the value n = 0; we have already treated this case.

Suppose ω lies in (−1/2, 0), which is the interval of the first kind at the value n = 1.
Consider the central charge Z ′ = Z ◦ σ1. Recall that σ−1

1 takes stability conditions of type
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Figure 11. The set Λ of stability conditions of type I for the CY2 cat-

egory associated to Â1. The stability conditions are labelled by the ratio
Z(P0)

Z(P0)+Z(P1)
. The interior of the disk represents the upper half plane.

I to those (possibly in the closure) of type II. Also note that ω′ = Z ′(P0)/Z
′(P1) lies in the

interval (0,+∞). The previous argument applied to type II conditions shows that there is
a unique τ ′ of type II with central charge Z ′. Then τ = σ1τ

′ gives the unique point of Λ
with central charge Z.

Now suppose ω = Z(P1)/Z(P0) lies in
(
− n

n+1 ,−
n−1
n

)
for some n ≥ 2. We construct the

corresponding stability condition using the action of the element γ = σ1σ0, which tilts the
standard heart. Let m = ⌊n/2⌋ and set Z ′ = Z ◦ γm. Then ω′ = Z ′(P1)/Z

′(P0) lies in one
of the two intervals (−1/2, 0) or (0,+∞), depending on the parity of n. In either case, the
previous argument shows that there is a unique stability condition τ ′ of type I with central
charge Z ′. Since γ preserves Λ, the stability condition τ = γmτ ′ gives the unique point of
Λ with central charge Z.

For ω = Z(P1)/Z(P0) in the intervals of the second kind, we use a similar argument with
Z ′ = Z ◦ γ−m. We omit the details.

We have shown that the map τ 7→ ωτ is a bijection from Λ to H\L. It is evident from the
proof that the inverse map is continuous; therefore the map τ 7→ ωτ is a homeomorphism
from Λ to H \ L. □

It will be convenient in the remainder of this section to consider a change of coordi-
nates from the previous proposition. Let ∆ be a closed disk, considered as the one-point
compactification of the closed upper half plane. Consider the map

δ : Λ → ∆

defined as

(55) δτ =
Zτ (P0)

Zτ (P0) + Zτ (P1)
.

By changing coordinates from Proposition 8.17, we see that δ is injective and a homeomor-
phism onto its image, and also that the image of δ is precisely

∆ \ (Z ∪ {∞}).

Figure 11 shows a sketch of Λ as a subset of the closed disk ∆.



THURSTON COMPACTIFICATION OF THE SPACE OF STABILITY CONDITIONS 59

8.7. The closure. We use the embedding Λ
δ
↪→ ∆ to prove the following proposition.

Proposition 8.18 (Closure of Λ). The closure of m(Λ) in P(RS) is precisely

m(Λ) = m(Λ) ∪ {hom(Pi) | i ∈ Z} ∪ {hom(P1)− hom(P0)}.
This closure is homeomorphic to ∆.

Proof. Via the identification Λ ∼= ∆\(Z∪{∞}) via the map δ from (55), the set ∆\(Z∪{∞})
maps to P(RS) by m ◦ δ−1. We now show that this map extends continuously to ∆. By
Proposition 8.16, we can express the mass functional mτ of τ ∈ Λ as an infinite linear
combination of the Gromov coordinates of τ . We now compute the limit of each Gromov
coordinate of τ as δτ approaches one of the points in Z ∪ {∞}, and thereby check that the
map mτ extends continuously.

Consider some τ ∈ Λ with central charge Zτ ; let us compute the limit of the Gromov
coordinates as δτ approaches some point of Z∪{∞}. We know that up to a complex scalar,
we have

Zτ (P0) = 1, Zτ (P1) =
1− δτ
δτ

.

We see that

Zτ (Pi) =
|i|(1− δτ ) + |i− 1|δτ

δτ
.

First suppose that δτ approaches some n ∈ Z. In this case,

Zτ (Pi) →
|i|(1− n) + |i− 1|n

n
.

We can compute from Definition 8.15 that the limit of the jth Gromov coordinate is

xj(τ) →

{
0, j ̸= n,

1, j = n
.

The sum in (53) obviously converges in the limit. Up to a simultaneous scalar, the limit of
the mass functional is

mτ (−) → hom(Pn,−).

Now suppose that δτ approaches ∞. In this case,

Zτ (Pj) → −|i|+ |i− 1| =

{
−1, i > 0,

1, i ≤ 0
.

We compute that

xj(τ) →


0, i < 0 or i > 1,

−1, i = 0,

1, i = 1.

Again, the sum in (53) obviously converges in the limit. Up to a simultaneous scalar, the
limit of the mass functional is

mτ (−) → hom(P1,−)− hom(P0,−).

We have exhibited a factoring

Λ P(RS)

∆

δ

m

d
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and identified the additional points in the image of ∆. Since ∆ is compact, no other points
are in the closure of m(Λ). □

Remark 8.19. The point ∞ is already a limit point of the subset Z ∪ {∞} ⊂ ∆. Therefore
the additional point in the closure, namely the functional hom(P1)− hom(P0), is already a
limit point of the set {hom(Pi) | i ∈ Z}.

It is now easy to identify the closure of Stab(C)/C, using the following contraction prop-
erty, analogous to Proposition 7.20. Fix a metric on P1(R) = S1.

Proposition 8.20. Let ϵ > 0 and let I ⊂ P1(R) be a compact subset. Then for all but
finitely many elements g ∈ BΓ, the image g(I) has diameter less than ϵ.

Proof. The action of BΓ on P1(R) is via the map BΓ → PSL2(Z) of Equation (47). The
claim is true for PSL2(Z), as shown in the proof of Proposition 7.20, and hence also for
BΓ. □

Let M and P be the images of Stab(C)/C and S in PS, respectively.

Proposition 8.21 (Closure of M). The sets M and P are disjoint, and their union is the
closure of M .

Proof. The proof is analogous to the proof of Proposition 7.21. □

We conjecture that the union M ∪P is homeomorphic to a closed disk, as in the A2 case.

Appendix A. Rectifiable filtrations

In this section, we formulate sufficient conditions on a filtration to ensure that it can be
re-arranged to the Harder–Narasimhan (HN) filtration.

Fix a triangulated category C and stability condition on C. For a semistable object x, let
ϕ(x) denote its phase. For any object x, denote by ⌊x⌋ (resp ⌈x⌉) the semistable factor of
lowest (resp. highest) phase in its HN filtration. We retain the subscript notation for the
various truncations induced by the stability condition from Section 2.1.

The first basic question is as follows. Consider a distinguished triangle

x→ y → z → x[1].

When can we easily obtain the HN filtration of y from that of x and z? The following
property of the map z → x[1] leads to the answer.

Definition A.1 (Rectifiable map). We say that a map z → x[1] is rectifiable if for every
α ∈ R, the induced map z>α → x≤α[1] obtained as the composition

z>α z

x[1] x≤α[1]

vanishes. Furthermore, we say that a triangle x→ y → z
+1−−→ is rectifiable if the connecting

map z → x[1] is rectifiable.

Remark A.2. A given object has only finitely many HN pieces, and hence only finitely
many distinct truncations. Therefore, checking the rectifiability of a given map involves
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only finitely many vanishing conditions. In particular, z → x[1] is rectifiable if and only if
for all α, the induced map

z≥α → x<α[1]

vanishes.

Example A.3. (1) The zero map z → x[1] is rectifiable.
(2) If both z → x1[1] and z → x2[1] are rectifiable, then so is the direct sum z →

(x1 ⊕ x2)[1].
(3) Analogously, if z1 → x[1] and z2 → x[1] are rectifiable, then so is the direct sum

(z1 ⊕ z2) → x[1].
(4) Suppose ϕ(⌊x⌋) ≥ ϕ(⌈z⌉). Then any map z → x[1] is rectifiable. Indeed, either z>α

or x≤α is zero.

Proposition A.4. Suppose z → x[1] is rectifiable. Then for any maps y → z and x → w,
the induced map y → w[1] is rectifiable. That is, rectifiable maps form a two-sided ideal.

Proof. The map y>α → w≤α[1] factors as

y>α → z>α → x≤α[1] → w≤α[1].

Since z → x[1] is rectifiable, the map z>α → x≤α[1] vanishes. Hence, the map y>α → w≤α[1]
vanishes too. □

We will need the following simple observations.

Lemma A.5. Let x→ y → z
+1−−→ be a distinguished triangle.

(1) Let f : a→ y be a map such that the composite a
f−→ y → z is zero. Further, suppose

Hom(a, z[−1]) = 0. Then there is a unique map f̂ : a → x such that the composite

a
f̂−→ x→ y is f .

(2) Dually, let f : y → a be a map such that the composite x→ y
f−→ a is zero. Further,

suppose Hom(x[1], a) = 0. Then there is a unique map f̂ : z → a such that the

composite y → z
f̂−→ a is f .

Proof. The existence of f̂ follows from the axioms of triangulated categories. The difference
of two such maps factors through a map x→ z[−1], which must be zero by assumption.

The proof of the dual statement is similar. □

Lemma A.6. Consider a filtration

x1 x2 x3.

y2 y3
+1 +1

Suppose that the connecting map y3 → y2[1] vanishes. Then we can flip y2 and y3. More
precisely, for some object x′2, we have a filtration

x1 x′2 x3,

y3 y2
+1 +1

such that the connecting map y2 → y3[1] also vanishes.
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Proof. Let z be such that x1 → x3 → z
+1−−→ is a distinguished triangle, where the first map

is the composition x1 → x2 → x3 from the given diagram. We see by the octahedral axiom

that y2 → z → y3
+1−−→ is also a distinguished triangle. The connecting map y3 → y2[1] in

this distinguished triangle is the same as the one in the given filtration, and is hence zero.
Therefore, the distinguished triangle is split and we have z ∼= y2 ⊕ y3.

Now consider the composition of x3 → z with the projection z → y2. Let x
′
2 be an object

such that the triangle

x′2 → x3 → y2
+1−−→

is distinguished. Again, the octahedral axiom shows that

x1 → x′2 → y3
+1−−→

is a distinguished triangle, and we obtain the desired filtration. It is easy to see that the
connecting map y2 → y3[1] is also zero, as it is part of the split distinguished triangle

y3 → z → y2
+1−−→. □

Proposition A.7. Suppose e : z → x[1] is rectifiable.

(1) There exist unique maps z≤α
e≤α−−→ x≤α[1] and z>α

e>α−−→ x>α[1] fitting in a morphism
of distinguished triangles as follows.

z>α z z≤α

x>α[1] x[1] x≤α[1]

e>α
e e≤α

+1

+1

(2) The maps e≤α and e>α are rectifiable.
(3) Complete e to a distinguished triangle

y → z
e−→ x[1]

+1−−→ .

Then we have distinguished triangles

y≤α → z≤α
e≤α−−→ x≤α[1]

+1−−→ and

y>α → z>α
e>α−−→ x>α[1]

+1−−→ .

Proof. Let us prove each part in sequence.

(1) Recall that we have the following distinguished triangles:

(56)
z>α → z → z≤α

+1−−→ and

x>α[1] → x[1] → x≤α[1]
+1−−→ .

The composition z>α → z
e−→ x[1] → x≤α[1] vanishes because e is rectifiable. Fur-

thermore, there are no non-zero maps from z>α to x≤α. Therefore, by Lemma A.5,
we obtain a unique map

e≤α : z>α → x>a[1]
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that makes the following square commute.

z>α z

x>α[1] x[1]

e>α
e

The argument for e≤α is similar.
(2) Let us check that e>α is rectifiable. We must check that for every β, the map

z>max(α,β) → x(α,β][1]

is zero. This is clear if β ≤ α, so assume β > α. Then the map above becomes

z>β → x(α,β][1].

Consider the distinguished triangle

x≤α → x(α,β][1] → x≤β [1] →
+1−−→ .

The composite

z>β → x(α,β][1] → x≤β [1]

is zero because e is rectifiable. Thus there is an induced map z>β → x≤α making
the following diagram commute.

z>β

x≤α x(α,β][1]

However, since β > α, any such induced map must be zero. Therefore the original
map z>β → x(α,β][1] is zero.

By a similar argument, we see that e≤α is also rectifiable.
(3) The distinguished triangle

x→ y → z
+1−−→

combined with (appropriate shifts of) the distinguished triangles (56) gives us a
filtration as follows:

0 y1 y2 y3 y4 = y.

x>α x≤α z>α z≤α

+1 +1 +1 +1

Since z → x[1] is rectifiable, the connecting map z>α → x≤α[1] vanishes. Us-
ing Lemma A.6, we obtain a new filtration

0 y1 y′2 y3 y4 = y.

x>α z>α x≤α z≤α

+1 +1 +1 +1

It is clear from the proof of Lemma A.6 and the uniqueness statement of Proposi-
tion A.7 that the connecting maps z≤α → x≤α[1] and z>α → x>α[1] in the diagram
above are e≤α and e>α respectively.
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Let y′′2 be an object such that y′2 → y → y′′2
+1−−→ is a distinguished triangle. By

the octahedral axiom, we have distinguished triangles

x>α → y′2 → z>α
e>α−−→ x>α[1]

x≤α → y′′2 → z≤α
e≤α−−→ x≤α[1]

+1−−→ .

We note because of the distinguished triangles above that

(y′2)≤α = 0 and (y′2)>α = y′2,

and so y>α = y′2. Similarly, y≤α = y′′2 . The proof is complete.

□

Warning A.8. The maps e≤α and e>α constructed in the previous proof are not the same as
the maps induced by the truncation functors (−)≤α and (−)>α. Indeed, the object x≤α[1]
is not the same as the object (x[1])≤α, and similarly x>α[1] is not the same as (x[1])>α.

For every α ∈ R, recall that Cα is the abelian category of semi-stable objects of phase α.

Proposition A.9. Let x → y → z
e−→ x[1] be a rectifiable triangle. For every α ∈ R we

have an exact sequence
0 → xα → yα → zα → 0

in Cα. Consequently, we have

mq(y) = mq(x) +mq(z).

Proof. Since e is rectifiable, we can apply Proposition A.7 twice to obtain a distinguished
triangle

xα → yα → zα
+1−−→ .

All three objects lie in the abelian category Cα, which is an abelian subcategory of the
C[α,α+1). Since the latter is the heart of a t-structure, the distinguished triangle becomes a
short exact sequence.

Since Z is additive for short exact sequences, we get

Z(yα) = Z(xα) + Z(zα).

But the three numbers all lie on the ray of argument πα, so we get

|Z(yα)| = |Z(xα)|+ |Z(zα)|.
Multiplying throughout by qα gives

mq(yα) = mq(xα) +mq(zα).

There are only finitely many numbers α such that one of the objects xα, zα, and yα is
non-zero. Summing over all such α yields mq(y) = mq(x) +mq(z). □

We now take up filtrations.

Definition A.10 (Rectifiable filtration). Consider a filtration

x0 → x1 → · · · → xn.

We inductively define what it means for such a filtration to be rectifiable. All filtrations for
n = 0 and 1 are rectifiable. For n ≥ 2, the filtration is rectifiable if the following hold.

(1) The filtration x1 → · · · → xn is rectifiable.
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(2) Suppose x(i, j) completes xi → xj to a distinguished triangle

xi → xj → x(i, j)
+1−−→ .

Then the connecting map x(1, n) → x(0, 1)[1] arising from

x0 x1 xn,

x(0, 1) x(1, n)

+1 +1

is rectifiable.

Remark A.11. In the previous definition, the objects x(i, j) are unique up to (possibly
non-unique) isomorphism, so the rectifiability of the connecting map is independent of the
particular choices.

Henceforth in this section, if f : x → z is a morphism, we will denote by Cone(f) any

object that fits into a distinguished triangle x
f−→ z → Cone(f)

+1−−→. Although such an
object is not canonically defined in general, it will be sufficient for the arguments that it is
unique up to isomorphism.

Remark A.12. The definition of a rectifiable filtration is “translation invariant” in the fol-
lowing sense. Given a filtration x0 → x1 → · · · → xn, set x

′
i = Cone(x0 → xi) and consider

the filtration 0 → x′1 → · · · → x′n. Then the first filtration is rectifiable if and only if the
second one is. Indeed, the cones x(i, j) and the connecting maps between them in the first
filtration are isomorphic to the corresponding objects in the second filtration.

Proposition A.13. Consider a filtration

x0 → · · · → xn,

and set ai = Cone(xi−1 → xi). If for all i, the lowest HN phase of ai is greater than or
equal to the highest HN phase of ai+1, then the filtration is rectifiable. In particular, the HN
filtration is rectifiable.

Proof. We induct on n. The base cases n = 0, 1 are evident. Let us use the notation
of Definition A.10. To go from n − 1 to n, consider the map x(1, n) → x(0, 1) = a1. The
hypothesis implies that the lowest HN phase of x(0, 1) is greater than or equal to the highest
HN phase of x(1, n), so the map is rectifiable by Example A.3. □

Proposition A.14. Suppose x0 → · · · → xn is rectifiable. Then for every i, j with i < j,
the filtration xi → · · · → xj is rectifiable.

Proof. This is an easy consequence of Proposition A.4. □

Recall that x(i, j) = Cone(xi → xj).

Proposition A.15. Consider a filtration x0 → x1 → · · · → xn. The following are equiva-
lent:

(1) x0 → x1 → · · · → xn is rectifiable.
(2) for all i, both x0 → · · · → xi and xi → · · · → xn are rectifiable, and the triangle

x(0, i) → x(0, n) → x(i, n)
+1−−→

is rectifiable.
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(3) for some i, both x0 → · · · → xi and xi → · · · → xn are rectifiable, and the triangle

x(0, i) → x(0, n) → x(i, n)
+1−−→

is rectifiable.

Proof. Let us show that (1) implies (2). We induct on i. The case i = 1 follows from
the definition of a rectifiable filtration. Assume i ≥ 2. Proposition A.14 implies that the
smaller filtrations x0 → · · · → xi and xi → · · · → xn are both rectifiable. Recall that
x(i, j) = Cone(xi → xj). We now prove that the map x(i, n) → x(0, i)[1] is rectifiable.
Given α ∈ R, we must prove that

(57) x(i, n)>α → x(0, i)≤α[1]

vanishes. By Proposition A.7, we have the triangle

x(0, 1)≤α → x(0, i)≤α → x(1, i)≤α
+1−−→

By the inductive hypothesis applied to the rectifiable filtration x1 → · · · → xn for (i − 1),
we get that the map

(58) x(i, n) → x(1, i)[1]

is rectifiable. Therefore, the composite

x(i, n)>α → x(0, i)≤α[1] → x(1, i)≤α[1]

already vanishes. By Lemma A.5, (57) factors uniquely through a map

(59) x(i, n)>α → x(0, 1)≤α[1].

By Proposition A.7 applied to the rectifiable map in (58), we have the triangle

x(1, i)>α → x(1, n)>α → x(i, n)>α
+1−−→ .

Consider the diagram

x(1, n)>α x(i, n)>α x(1, i)>α[1]

x(0, 1)≤α[1].

(59)

+1

The composite
x(1, n)>α → x(i, n)>α → x(0, 1)≤α[1]

vanishes since x0 → · · · → xn is rectifiable. Therefore, the map (59) factors through a map
x(1, i)>α[1] → x(0, 1)≤α[1]. But the last map must vanish for phase reasons. As a result,
(59) vanishes and so does (57). We have thus proved that x(i, n) → x(0, i)[1] is rectifiable.

That (2) implies (3) is a tautology.
Let us show that (3) implies (1). We again induct on i. The case i = 1 is the definition.

Assume i ≥ 2. By using Proposition A.14 and the inductive hypothesis, we conclude that

x1 → · · · → xn

is rectifiable. It remains to show that the map x(1, n) → x(0, 1)[1] is rectifiable. Given
α ∈ R, consider the map

(60) x(1, n)>α → x(0, 1)≤α[1].

We have the rectifiable triangle

x(1, i) → x(1, n) → x(i, n)
+1−−→,
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which by Proposition A.7 gives a distinguished triangle

x(1, i)>α → x(1, n)>α → x(i, n)>α
+1−−→ .

Since x0 → · · · → xi is rectifiable, the composite

x(1, i)>α → x(1, n)>α → x(0, 1)≤α[1]

vanishes. By Lemma A.5, (60) factors uniquely through a map

(61) x(i, n)>α → x(0, 1)≤α[1].

Since x0 → · · · → xi is rectifiable, we have the triangle

x(0, 1)≤α → x(0, i)≤α → x(1, i)≤α
+1−−→ .

Consider the diagram

x(i, n)>α

x(1, i)≤α x(0, 1)≤α[1] x(0, i)≤α[1] .

(61)

+1

The composite

x(i, n)>α → x(0, 1)≤α[1] → x(0, i)≤α[1]

vanishes since x(i, n) → x(0, i)[1] is rectifiable. As a result, (61) factors through a map
x(i, n)>α → x(1, i)≤α. But the last map must vanishes for phase reasons. As a result, (61)
vanishes and so does (60). The proof is now complete. □

Theorem A.16. Suppose that a filtration 0 = x0 → x1 → · · · → xn = x is rectifiable. Set
ai = Cone(xi−1 → xi). Then for any α ∈ R, we have an induced filtration

0 ⊂ (x1)α ⊂ · · · ⊂ (xn)α = xα

in the abelian category Cα, with factors

(xi)α/(xi−1)α = (ai)α.

Consequently, we have

mq(x) =
∑

mq(ai).

Proof. We induct on n. The base cases n = 0, 1 are immediate. Suppose the statement
holds for n− 1. Since 0 = x0 → x1 → · · · → xn is rectifiable, the triangle

x(0, n− 1) → x(0, n) → x(n, n− 1)
+1−−→

is rectifiable by Proposition A.15. Note that this triangle is equal to

xn−1 → xn → an
+1−−→ .

By Proposition A.9, in Cα we have the short exact sequence

(62) 0 → (xn−1)α → (xn)α → (an)α → 0.

That is, we have an inclusion (xn−1)α ⊂ (xn)α whose quotient is (an)α. We now apply the
inductive hypothesis to the rectifiable filtration

0 = x0 → · · · → xn−1

to obtain the filtration

0 ⊂ (x1)α ⊂ · · · ⊂ (xn)α = xα
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with the desired factors. Summing over the α as in Proposition A.9, we see that the q-mass
of x is the sum of the q-masses of the ai. □

Proposition A.17. Suppose

x0 → · · · → xi−1 → xi → xi+1 → · · · → xn

is rectifiable, and the map x(i, i+ 1) → x(i− 1, i)[1] is zero. Consider a filtration

x0 → · · · → xi−1 → x′i → xi+1 → · · · → xn = x,

obtained by flipping x(i− 1, i) and x(i, i+ 1) as in Lemma A.6. Then this new filtration is
also rectifiable.

Proof. By Proposition A.15, it suffices to show that

(1) the filtration x0 → · · · → xi−1 is rectifiable;
(2) the filtration xi−1 → x′i → · · · → xn is rectifiable; and

(3) the triangle x(0, i− 1) → x(0, n) → x(i− 1, n)
+1−−→ is rectifiable.

The first and third conditions follow directly from the rectifiability of the original filtration,
so it remains to check the second. Once again, we apply Proposition A.15. It suffices to
show that

(1) the filtration xi−1 → x′i → xi+1 is rectifiable;
(2) the filtration xi+1 → · · · → xn is rectifiable; and

(3) the triangle x(i− 1, i+ 1) → x(i− 1, n) → x(i+ 1, n)
+1−−→ is rectifiable.

The second and third conditions follow directly from the rectifiability of the original filtra-
tion, so it remains to check the first. However, the connecting map in the first filtration is
zero by Lemma A.6, and so it is rectifiable. The proof is complete. □

Theorem A.18. Consider a filtration

x0 → · · · → xn = x.

Set ai = Cone(xi−1 → xi). Suppose for every i, j with i < j, we have

Hom(aj , ai[1]) = Hom(ai, aj [1]) = 0 or ϕ(⌊ai⌋) ≥ ϕ(⌈aj⌉).
Then the filtration is rectifiable.

Proof. We induct on n. The base cases n = 0, 1 are trivial. Assume n ≥ 2.
Suppose i is such that

ϕ(⌈ai⌉) < ϕ(⌈ai+1⌉).
Then we also have ϕ(⌊ai⌋) < ϕ(⌈ai+1⌉), and by the hypothesis, we must have Hom(ai+1, ai[1]) =
0. In particular, the connecting map ai+1 → ai[1] vanishes. Consider a filtration obtained
by flipping ai and ai+1 as in Lemma A.6. The sequence of factors of the new filtration is

a1, . . . , ai−1, ai+1, ai, ai+2, . . . an.

Observe that the new filtration also satisfies the hypotheses of the theorem. By Proposi-
tion A.17, it suffices to check that the new filtration is rectifiable.

By repeatedly swapping adjacent terms as above, we may assume that

ϕ(⌈a1⌉) ≥ · · · ≥ ϕ(⌈an⌉).
By the inductive hypothesis, the filtration

x1 → · · · → xn
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is rectifiable. It remains to check that the triangle

(63) x(0, 1) → x(0, n) → x(1, n)
+1−−→

is rectifiable.
Note that x(0, 1) = a1. Let b = ϕ(⌊a1⌋). Partition {2, . . . , n} in two subsets {2, . . . , i}

and {i+ 1, . . . , n} such that:

(1) for all j ∈ {2, . . . , i} we have b < ϕ(⌈aj⌉), and
(2) for all j ∈ {i+ 1, . . . , n} we have b ≥ ϕ(⌈aj⌉).

If the first set is empty, take i = 1; in this case, x(1, i) = 0. If the second set is empty, take
i = n+ 1, and set x(i, n) = 0. Consider the diagram

x(1, i) x(1, n) x(i, n)

a1[1]

+1

in which the vertical map is the connecting map of (63). The object x(1, i) has the filtration

0 = x(1, 1) → x(1, 2) → · · · → x(1, i)

with subquotients a2, . . . , ai. By construction, for j ∈ {2, . . . , i}, we have

b = ϕ(⌊a1⌋) < ϕ(⌈aj⌉)

and hence, by hypothesis, we must have

Hom(aj , a1[1]) = 0.

As a result, we get

Hom(x(1, i), a1[1]) = 0.

Therefore, the vertical map of the diagram above factors as a composition

(64) x(1, n) → x(i, n) → a1[1].

Now, x(i, n) has the filtration

0 = x(i, i) → x(i, i+ 1) → · · · → x(i, n)

with factors ai+1, . . . , an. For j ∈ {i+ 1, . . . , n}, we have

b ≥ ϕ(⌈aj⌉),

and therefore

b = ϕ(⌊a1⌋) ≥ ϕ(⌈x(i, n)⌉).

By Example A.3, any map x(i, n) → a1[1] is rectifiable. In particular, the second map in
(64) is rectifiable. Proposition A.4 implies that x(1, n) → a1[1] is rectifiable; that is, the
triangle (63) is rectifiable. □
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Appendix B. Self-extensions of a spherical object

The aim of this section is to record some properties of self-extensions of a spherical object.
The results of this section plays a significant role in the proof of Theorem 4.9, and may also
be of independent interest.

Fix d ≥ 2, a triangulated category C, and a d-spherical object a of C. Fix a non-zero
element loopa ∈ Homd(a, a). It will be convenient to set e = d− 1.

Proposition B.1. Let an be an object of C that admits a filtration

(65)

0 = a−1 a0 · · · an

a a[−e] · · · a[−ne],

where the connecting maps

a[−ie] → a[−(i− 1)e+ 1]

are shifts of loopa. Then we have the following.

(1) The space Hom•(a, an) is two dimensional, with generators

in : a→ an and ln : a[−ne− d] → an

in degrees 0 and ne+ d respectively. The map in is a non-zero multiple of the map
a = a0 → an in (65).

(2) The space Hom•(an, a) is two dimensional, with generators

tn : an → a[d] and qn : an → a[−ne]

in degrees d and −ne respectively. The map qn is a non-zero multiple of an → a[−ne]
in (65).

(3) The compositions

tn ◦ in : a→ a[d],

qn ◦ ln : a[−ne− d] → a[−ne]

are non-zero multiples of shifts of loopa.

Proof. We prove the first two statements by induction on n.
For n = 0, the proposition follows from the the d-CY property of a. Let us assume it for

(n− 1), and prove it for n.
Consider the distinguished triangle

(66) an−1 → an → a[−ne] +1−−→ .

The connecting map a[−ne] → an−1[1] composed with the map an−1[1] → a[−(n− 1)e+ 1]
is a shift of loopa. In particular, the connecting map is non-zero.

Apply Hom(a,−) to (66) to get the long exact sequence

· · · → Homi(a, an−1) → Homi(a, an) → Homi(a, a[−ne]) → · · · .

Both Homi(a, an−1) and Homi(a, a[−ne]) are zero unless i ∈ {0, ne, ne + 1, ne + d}. So
Homi(a, an) = 0 for all i unless i ∈ {0, ne, ne+1, ne+d}. For i = 0, the long exact sequence
gives

0 → Hom0(a, an−1) → Hom0(a, an) → 0.
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From the inductive hypothesis, we conclude that Hom0(a, an) is one-dimensional and is
spanned by a copy of the map in : a0 → an from (65). For i = ne, the long exact sequence
gives

0 → Homne(a, an) → Homne(a, a[−ne]) → Hom(n−1)e+d(a, an−1).

The middle term is spanned by the identity and the last term is k by the inductive hypoth-
esis. Since the connecting map of (66) is non-zero, the map from the middle term to the
last term is non-zero, and hence Homne(a, an) = 0. For i = ne+ 1, the long exact sequence
gives

Homne(a, a[−ne]) → Homne+1(a, an−1) → Homne+1(a, an) → 0.

The first term is spanned by the identity and the middle term is k by the inductive hypoth-
esis. Since the connecting map of (66) is non-zero, the map from the middle term to the
last term is non-zero, and hence Homne+1(a, an) = 0.

Apply Hom(−, a) to (66) to get the long exact sequence

· · · → Homi(a[−ne], a) → Homi(an, a) → Homi(an−1, a) → · · · .
Both Homi(a[−ne], a) and Homi(an−1, a) are zero unless i ∈ {−ne,−ne+ d,−(n− 1)e, d}.
Hence Homi(an, a) = 0 unless i ∈ {−ne,−ne+d,−(n−1)e, d}. For i = −ne, the long exact
sequence gives

0 → Hom−ne(a[−ne], a) → Hom−ne(an, a) → 0.

We conclude that Hom−ne(an, a) is one-dimensional and is spanned by a copy of the map
qn : an → a[−ne] from (65). Since we have proved Homi(a, an) = 0 for i = ne and ne + 1,
the d-CY property implies that Homi(an, a) = 0 for i = −ne+ d and −(n− 1)e.

We have proved that Hom0(a, an) and Hom−ne(an, a) non-zero and spanned by the

maps in and qn in (65). We conclude using the d-CY property that Homd(an, a) and

Homne+d(a, an) are one-dimensional and spanned by the maps that compose with in and
qn to give loopa. We have also proved that all other hom spaces vanish. The induction step
is complete. □

Proposition B.2. For each n ≥ 0, there exists an object an, unique up to isomorphism,
which admits a filtration whose factors are a, a[−e], · · · , a[−ne] such that for all i, the con-
necting maps a[−ie] → a[−ie+ d] are shifts of loopa.

Proof. We induct on n. For the base case n = 0, we have a0 ∼= a.
We assume the result for n, and prove it for n+1. Observe that Proposition B.1 applies

to an. Let an+1 be the object that fits into a distinguished triangle

(67) a[−ne− d]
ln−→ an → an+1

+1−−→ .

Using the rotated triangle

an → an+1 → a[−(n+ 1)e]
+1−−→

and the assumed filtration of an, we obtain the desired filtration for an+1.
It remains to prove that the object an+1 is unique up to isomorphism. Consider another

object a′n+1 that also admits a filtration

(68) 0 → a′0 → · · · → a′n → a′n+1

satisfying the hypotheses. By the inductive hypothesis, we have an isomorphism a′n
∼= an.

The last map in (68) then fits into a distinguished triangle

a[−ne− d]
ι′−→ an → a′n+1

+1−−→ .
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By assumption, the composite of ι′ with the next map a′n → a[−(n − 1)e] in (68) is the

loop map; so ι′ ̸= 0. By Proposition B.1, Homne+d(a, an) is one-dimensional, so ι′ is a
non-zero scalar multiple of ln. By comparing (67) and (68), we obtain an isomorphism
an+1

∼= a′n+1. □

Proposition B.3. For each n ≥ 0, consider non-zero maps

in : a→ an, ln : a[−ne− d] → an

tn : an → a[d], qn : an → a[−ne]

as in Proposition B.1. Then we have distinguished triangles

an−1[−d]
tn−1[−d]−−−−−−→ a

in−→ an
+1−−→ and

an
qn−→ a[−ne] ln−1[1]−−−−→ an−1[1]

+1−−→ .

Proof. Using Proposition B.2, the objects ai fit into a filtration

(69)

0 = a−1 a0 · · · an

a a[−e] · · · a[−ne],

where the connecting maps are loop maps. By the uniqueness statement in Proposition B.2,
the cone of the map in : a = a0 → an is an−1[−e]. It gives rise to the first triangle. Likewise,
the cone of the map qn : an → a[−ne] is an−1[1]. It gives rise to the second triangle. □

Proposition B.4. For each n ≥ 0, the object an is indecomposable in C.

Proof. The statement is clear for n = 0: spherical objects are indecomposable because they
have a one-dimensional space of endomorphisms of degree zero. It can be checked, e.g., via
induction on 0 ≤ k ≤ n and using the triangles

ak−1 → ak → a[−ke] +1−−→

that Hom0(ak, an) is one-dimensional for each k ≤ n. In particular, Hom0(an, an) is one-
dimensional for each n, and so the objects an are indecomposable. □

In the remainder of the section, we prove some homological properties of the objects an.
These results are important ingredients in the proof of Theorem 4.9. Suppose we have a
stability condition τ on C such that a is a τ -semi-stable object in the [0, 1)-heart, with phase
strictly between 0 and 1. Then the defining filtration of an from Proposition B.2 is also
its τ -Harder–Narasimhan filtration, because the factors are semi-stable and of decreasing
phase.

Let I be the interval [0, e). For m ∈ Z, let by I −me be the translate [−me,−(m− 1)e).
For an object x ∈ C, we study the truncations xI−me. For the object an, observe that

(an)I−me =

{
a[−m] if m ∈ {0, . . . , n}
0 otherwise.

The objects an satisfy the following “lifting property”.

Lemma B.5. Let f : x→ an be a map such that the induced map

xI−ne → (an)I−ne
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vanishes. Then the map x≥−(n−1)e → an−1, obtained by truncating f , extends to a map
x→ an−1.

Proof. We have the distinguished triangle

x≥−(n−1)e → x→ x<−(n−1)e
+1−−→ .

It suffices to prove that the composition x<−(n−1)e[−1] → x≥−(n−1)e → an−1 vanishes. We
have the commutative diagram

x<−(n−1)e[−1] x≥−(n−1)e x

a[−ne− 1] an−1 an.

f

b

We prove that the composite b ◦ f vanishes. The map

xI−ne[−1] → a[−ne− 1]

induced by f vanishes by assumption. Therefore, f factors through a map g as follows

xI−ne[−1] x<−(n−1)e[−1] x<−ne[−1]

a[−ne− 1].

f g

Now it suffices to prove that the composite

b ◦ g : x<−ne[−1] → an−1

vanishes. The phases of the HN factors of the domain lie in the interval (−∞,−ne−1). The
HN factors of the codomain are d-CY and their phases lie in the interval [−(n−1)e,+∞). Let
s be a semi-stable HN factor of the domain and t a semi-stable HN factor of the codomain.
Then ϕ(t) > ϕ(s) + d. By the d-CY property of t, we have

hom(s, t) = hom(t, s[d]),

and the right hand side must vanish since ϕ(t) > ϕ(s[d]). We conclude that

hom(x<−ne[−1], an−1) = 0,

and hence the composite b ◦ g vanishes. □

We can use the previous lemma to show that the map in : a → an of degree zero is
irreducible in the following way.

Lemma B.6. Let x be an object that does not contain a as a direct summand and does
not have a self hom of negative degree. Then, for any n ≥ 0, the map in : a → an does not
factor as a→ x→ an.

Proof. We prove the contrapositive. We continue to use truncations to the translates of the
interval I.

Suppose we have maps s : a → x and q : x → an that compose to in : a → an. Let n be
the smallest with this property. If n = 0, then we obtain a as a direct summand. If n > 0,
we claim that the composite map

(70) x
q−→ an → a[−ne] s[−ne]−−−−→ x[−ne]

is non-zero.
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To see this, we first consider the map

(71) xI−ne → (an)I−ne.

If this map is zero, Lemma B.5 yields a map r : x→ an−1 which also has the property that
the composite of s : a→ x and r : x→ an−1 is in−1 : a→ an−1. Since we chose n to be the
smallest with this property, we conclude that the map (71) is non-zero.

Second, we see that the composite

aI → xI → (an)I

is the identity. Therefore, the map aI → xI has a left inverse.
Now, consider the maps on the truncations induced by (70)

xI−ne
q−→ (an)I−ne

=−→ a[−ne] s[−ne]−−−−→ (x[−ne])I−ne.

The first map is non-zero, the middle map is an equality, and the last map has a left
inverse. It follows that the composite is non-zero, and hence the composite in (70) is also
non-zero. □
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