
A SPHERE OF SPHERICAL OBJECTS

ASILATA BAPAT, ANAND DEOPURKAR, AND ANTHONY M. LICATA

Abstract. Given a Bridgeland stability condition on a 2-Calabi–Yau category, we define a simplicial com-
plex that encodes the Harder–Narasimhan filtrations of spherical objects. For 2-Calabi–Yau categories of

type A, we relate this complex to the complex of pointed pseudo-triangulations on configurations of points
on the plane. Using this connection, we prove that the complex undergoes piecewise-linear wall-crossings as

we vary the stability condition, and is piecewise-linearly homeomorphic to a sphere.

Additionally, we prove that in a 2-Calabi–Yau category, a spherical object is determined by its Harder–
Narasimhan filtration.

1. Introduction

The goal of this paper is to introduce a geometric structure on the collection of spherical objects in a
2-CY category.

Results of [3] suggest that the collection of spherical objects should have a natural geometric structure.
Indeed, [3] shows that the spherical objects appear in the closure of the Bridgeland stability manifold under
a suitable embedding into an infinite projective space. Our main construction in this paper associates to
a Bridgeland stability condition τ a simplicial complex Στ , such that the spherical objects themselves are
rational points on Στ . Although the precise combinatorial structure of the simplicial complex depends on
the stability condition, we expect the complexes associated to different stability conditions to be piecewise-
linearly homeomorphic to each other. In this way, taken together, the simplicial complexes for various
stability conditions should give rise to a piecewise linear structure on the set of spherical objects of C.

It is particularly fruitful to study the complexes Στ for the 2-CY category associated to the Coxeter
system of type A. This setting connects to the geometry of curves in the plane. We use this connection to
make precise and prove the above expectations.

The simplicial complexes of interest in type A arise from two different sources:

(1) Harder–Narasimhan filtrations of spherical objects, and
(2) the geometry and combinatorics of pointed pseudo-triangulations on configurations of points in R2.

In the remainder of this introduction, we first give the main definitions and results, starting with type A.
Results, questions, and conjectures that arise for other 2-CY categories are described towards the end of
the introduction. Let Cn be the 2-CY category associated to the Coxeter system of type An, and let τ be a
stability condition on Cn. The simplicial complex Στ associated to τ is defined as follows.

Definition 1.1. The vertices of Στ are the τ -semistable spherical objects of Cn up to triangulated shift.
The simplices of Στ are collections of τ -semistable spherical objects that appear together in the Harder–
Narasimhan filtration of some spherical object of C.

The following proposition motivates the definition of Στ . In the main text, the first assertion is Corol-
lary 6.12 and the second assertion is Remark 3.7.

Proposition 1.2. Let τ be a stability condition on Cn. Let S be the collection of spherical objects in Cn up
to triangulated shift. We have the following results.

(1) The τ -HN factors of a spherical object are direct sums of τ -semistable spherical objects.
(2) Consider the map supp: S → Στ that sends a spherical object x to the formal sum of the indecom-

posable summands of its τ -HN factors. The map supp is injective and has dense image.

Thus the map supp identifies the spherical objects in Cn with a dense subset of Στ . Let Stab(Cn) be the
space of stability conditions on Cn. The following theorem summarises our main results about Στ .

Theorem 1.3. In the setup above, we have the following results.
1
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(1) Στ is piecewise-linearly homeomorphic to the sphere of dimension 2n− 3.
(2) A continuous path from τ to τ ′ in Stab(Cn) induces a piecewise-linear homeomorphism from Στ to

Στ ′ , which depends only on the homotopy class of the path.
(3) The (n + 1)-strand braid group acts on Στ by piecewise-linear homeomorphisms. This action is

compatible with its action on S. That is, the map supp: S → Στ is equivariant with respect to the
braid group.

The sphere Στ in Theorem 1.3 is the “sphere of spherical objects” in the title. Theorem 1.3 is a combination
of Theorem 3.19 and Corollary 6.13 in the main text.

1.1. The simplicial complex of pointed pseudo-triangulations. The proof of Theorem 1.3 uses the
strong relationship between Cn and the geometry of the plane with (n+ 1)-marked points, initiated in [22].
We expand on this relationship to include stability conditions and HN filtrations, extending the observations
in [32]. As a consequence, we rephrase the construction of Στ in purely geometric terms as the simplicial
complex of pointed pseudo-triangulations. This rephrasing is interesting in its own right and the resulting
geometry is independent of the categorical considerations.

Let a be a configuration of (n + 1) distinct points on the plane. First let us restrict to the generic case,
when no three points are collinear.

Definition 1.4. We say that a collection of line segments with endpoints in a is:

(1) non-crossing if no two segments intersect except at the endpoints, and
(2) pointed if the segments incident at every marked point lie in a half-space.

Maximal collections of segments that are non-crossing and pointed are called pointed pseudo-triangulations
or ppts.

As a special case, if the marked points form the vertices of a convex polygon, the pointedness condition
is automatically satisfied at every vertex, and thus a ppt is simply a triangulation. Ppts on generic point
configurations have previously been studied in other contexts (see, e.g. [26,27,30]). We extend this definition
to include point configurations that possibly have collinearities, by considering pseudo-straight segments
instead of straight segments (see Definition 2.4 and Fig. 2, and [5] for the case of maximally degenerate
configurations). Further, we say that a collection of (pseudo-straight) segments is a ppt* if it is a ppt minus
an external edge. We are thus led to the following.

Definition 1.5. Let a be a configuration of distinct points in R2. Let K(a) be the simplicial complex whose
vertices are pseudo-straight segments joining two points of a. A collection of segments forms a simplex if it
is non-crossing and pointed. Let K∗(a) ⊂ K(a) be the sub-complex consisting of simplices that exclude at
least one external edge.

There is a dictionary between geometric features of the plane with (n+1) marked points and categorical
features of Cn. (See also Table 1 for a summary.) A configuration a of (n + 1)-ordered points on the plane
corresponds to a standard stability condition τ on Cn. An arc (non-crossing curve joining two marked points
up to isotopy) corresponds to a spherical object on Cn. Among these, the pseudo-straight (resp. straight)
segments correspond precisely to the τ -semistable (resp. τ -stable) spherical objects. An arbitrary arc can
be “pulled tight” around the points, and it then becomes a concatenation of pseudo-straight segments. This
procedure corresponds to decomposing the associated spherical object into semistable τ -HN factors.

Consequently, a simplex in Στ corresponds to a collection of pseudo-straight segments that can appear
together (possibly with other pseudo-straight segments) by pulling an arc tight. Such a collection is auto-
matically non-crossing and pointed, and misses at least one external edge. Thus we obtain an isomorphism
between K∗(a) and Στ . We do not yet know a compelling categorical interpretation of K(a).

We prove statements about Στ by proving the analogous geometric statements about K∗(a). Specifi-
cally, Proposition 1.2 follows by observing that arcs pull tight to chains of arcs and from Theorem 6.10 as
well as Remark 3.7. Theorem 1.3 is a consequence of Theorem 3.19 and Corollaries 3.20 and 3.21. These
statements about K∗(a) and K(a) are proved by studying the wall-crossing between the complexes as the
point configurations change. Figure 1 shows the simplest example of a wall-crossing for K(a) as a degener-
ates from a triangle to three collinear points, and then deforms again to a triangle. The subcomplex K∗(a),
which in this case is the 1-sphere of spherical objects, is the boundary circle.
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Geometry 2-CY An category Reference

configuration of (n+ 1) points standard stability condition τ Proposition 6.3
arc on (n+ 1)-punctured plane spherical object Proposition 5.4
straight segments τ -stable spherical objects Proposition 6.6
pseudo-straight segments τ -semistable objects Proposition 6.6
decomposition of arc by pulling tight τ -HN filtration Theorem 6.10
ppt* τ -HN support of a spherical object Proposition 3.4
Dehn twist spherical twist [22]

Table 1. A dictionary between geometric objects and corresponding categorical objects.

Q

P

R

S
S

P

R

Q

S

P

Q

R

Figure 1. The piecewise-linear wall-crossing transformations induced on the complex K.
On the left is the complex K for three non-collinear points; in the middle for three collinear
points obtained by specialising the middle point onto the line segment joining the other two;
on the right for the three non-collinear points as the middle point deforms downwards.

Remark 1.6. The geometric realisation |K∗(a)| of K∗(a) is naturally homeomorphic to the space of pro-
jective measured foliations (PMFs) on the (n + 1)-punctured disk (see Section 4). The piecewise-linear
wall-crossings and braid group action on |K∗(a)| described in Theorem 1.3 are equivalent to the correspond-
ing properties of the space of PMFs. However, our proof of Theorem 1.3 is independent of this connection.

Remark 1.7. When the configuration of (n+1) points forms the vertices of a convex polygon, the complex
of ppts K(a) is just the complex of triangulations of the polygon. This complex K(a) is an iterated cone
over the cluster complex in type A (see, e.g. [11]), which is the polar dual of the associahedron. It would be
interesting to know if complexes K(a) and K∗(a) for non-convex configurations also appear independently
in cluster theory or other parts of mathematics which study the combinatorics of triangulations.

Remark 1.8. For the 2-CY category associated to the Coxeter system of type Ân, there is a dictionary,
similar to Table 1, between spherical objects/stability conditions and the topology/geometry of arcs on
an on an annulus with (n + 1)-marked points [12]. As a result, we expect analogues of Proposition 1.2
and Theorem 1.3 to follow from methods similar to this paper. Note, however, that the complex Στ is more
complicated to study (for example, it has infinitely many simplices). In particular, results of [3] show that
when n = 1, the complex Στ is not a circle, but is instead homeomorphic to R.

1.2. The complex of sphericals in other 2-CY categories. Let C be any 2-CY category, linear over an
infinite field k, of finite type, and which admits a dg enhancement. A version of Proposition 1.2 continues
to hold. Namely, suppose τ is a stability condition that is generic in the following sense: all τ -semi-stable
spherical objects are τ -stable. Then the τ -HN factors of a spherical object are spherical (this follows from the
Mukai lemma; see Section 8). As a result, we can define the τ -HN support of a spherical object as before.
Thus, for a generic stability condition τ , Definition 1.1 gives a simplicial complex whose points include
HN supports of spherical objects. We do not know whether the HN support always characterises spherical
objects, but we prove a close result: for spherical objects in C, the ordered list of HN factors determines the
spherical object (Theorem 8.6).



4 ASILATA BAPAT, ANAND DEOPURKAR, AND ANTHONY M. LICATA

1.3. The sphere of sphericals for finite-type Coxeter systems. In addition to the 2-CY categories
of type A, we also completely understand the complex of sphericals for 2-CY categories associated to rank
two Coxeter systems. Let C be a 2-CY category associated to a rank two Coxeter system. Then C carries
an additional action of a fusion category, and it is natural to study stability conditions that are equivariant
with respect to this action. Likewise, it is natural to consider the collection of spherical objects in C up to
triangulated shift and the action of the fusion category.

When C is the 2-CY category of a rank two Coxeter system, fusion-equivariant stability conditions on C
are well-understood (see [9, 13, 14, 15]) via the machinery of Harder–Narasimhan automata. We use these
results to establish analogues of Proposition 1.2 and Theorem 1.3 in this setting in Section 7. In particular,
for any finite Coxeter group W of rank two, the simplicial complexes associated to any stability condition
are all homeomorphic to S1.

1.4. Further questions and conjectures. The paper raises several questions—on the categorical side, on
the geometric side, and on the interface. We gather a few with some remarks.

Definition 1.1 applies to generic stability conditions on arbitrary 2-CY categories, not just to the ones
covered by our main theorems. This includes 2-CY categories for more general graphs or Coxeter systems,
as well as 2-CY categories arising in geometry such as the derived categories of coherent sheaves on K3
surfaces. Let C be an arbitrary 2-CY category.

Question 1.9. Let τ be a generic stability condition on C. What can we say about the complex Στ? Does
it remain a manifold? If it does, of what dimension?

The key to answering these questions is understanding the constraints on the stable factors of a spherical
object in a 2-CY category. In type A, we characterise these constraints geometrically in terms of ppt*s. We
conjecture that for generic stability conditions on 2-CY categories- associated to finite-type Coxeter systems
of rank r, the simplicial complex Στ is homeomorphic to the sphere of dimension (2r − 3).

Question 1.10. Let τ be a generic stability condition on C. What are the constraints on the collections of
stable spherical objects that can appear together in the τ -HN filtration of a spherical object?

Now let τ be any stability condition on C, not necessarily generic. In general, the τ -HN factors of spherical
objects are not necessarily direct sums of spherical objects (a counterexample can be found in type D4). So
we cannot define the support of a spherical object as a point of Στ . In this setting, we should replace Στ by
a different simplicial complex.

Question 1.11. What is the correct definition of Στ for non-generic stability conditions τ?

Let C be the 2-CY category associated to a Coxeter system. Let B be the Artin-Tits group of the Coxeter
system. Set Σ = Στ for some generic stability condition τ . The group B acts on Σ by homeomorphisms. As
we establish in type A in our main theorem (Theorem 1.3), we expect this action to be piecewise-linear. We
end with a somewhat open ended question.

Question 1.12. To what extent can B be recovered from the piecewise-linear structure on Σ?

Our motivation comes from analogous rigidity statements in Teichmüller theory. The space of projective
measured foliations on a surface admits a piecewise-linear (PL) structure using the train-track atlas. One
can define a distinguished collection of functions with respect to this atlas. Under suitable hypotheses, the
mapping class group consists precisely of PL automorphisms that preserve this collection (see, e.g. [24, The-
orem 3.11]). In this vein, consider functions f : Σ→ R that are linear combinations of Harder–Narasimhan
mass functions of a finite number of stability conditions. The braid group preserves this collection of func-
tions. Is the braid group precisely the group of PL automorphisms of Σ that preserves this collection?

1.5. Organisation. We have organised the paper so that the geometry precedes the category theory, and
is self-contained. In Section 2, we define the main geometric players. In Section 3, we define and study the
simplicial complex of pointed pseudo-triangulations. In Section 4, we relate this complex to with the space
of projective measured foliations.

In Section 5, we recall the definitions of the categories, and give a brief reminder on Bridgeland stability
conditions. We also recall results of Khovanov–Seidel [22] that relate these categories in type A to the
geometric setup discussed earlier. In Section 6 we give a geometric description of semistable objects and
Harder–Narasimhan filtrations.
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In Section 7, we describe the simplicial complex Στ for (fusion-equivariant) stability conditions for 2-
Calabi–Yau categories of rank two Coxeter systems.

In Section 8, we return to the setting of stability conditions on a general 2-Calabi–Yau category. We
prove that in a generic stability condition, a spherical object is determined by the ordered list of its Harder–
Narasimhan factors.

In Appendix A, we give a self-contained account of a spectral sequence that computes morphisms between
two objects in terms of morphisms between their filtered pieces.

Acknowledgements. We thank Edmund Heng, Ian Le, Vincent Pilaud, and Hoel Queffelec for several
helpful conversations. We are supported by the Australian Research Council Award DP240101084. A. B. is
additionally supported by the Australian Research Council award DE240100447.

2. Geometric setup and background

In this section we introduce the geometric setup we need, including arcs on point configurations (Sec-
tion 2.1) as well as the notion of pointed-pseudo-triangulations (Section 2.2).

2.1. Configurations, arcs, segments, and spines. Fix a non-negative integer n. A point configuration is
a sequence of n+1 distinct points in C. Let a = (a0, . . . , an) be a point configuration and let i, j ∈ {0, . . . , n}
be distinct.

Definition 2.1. An oriented arc from ai to aj is an isotopy class of a continuous map γ : [0, 1] → C with
γ(0) = ai and γ(1) = aj with γ((0, 1)) ⊂ C \ {a0, . . . , an}.

Fix an orientation on S1. An oriented curve on a is the isotopy class of a simple closed curve γ : S1 →
C \ {a0, . . . , an} that encloses at least 2 marked points.

Definition 2.2. An arc (resp. curve) is an oriented arc (resp. curve) modulo the orientation. The length
ℓ(γ) of an arc (resp. curve) γ is the infimum of the lengths of the representatives in its isotopy class.

The boundary-parallel curve on a configuration a is the curve represented by a circle that contains all
points of a in its interior.

Definition 2.3. An (oriented) multi-curve is a multi set {c1, . . . , ck} whose elements ci are either (oriented)
curves or arcs, and such that we can choose representatives γ1, . . . , γk of c1, . . . , ck that are pairwise disjoint.
Such a multi-curve is admissible if no component ci is the boundary parallel curve.

Let Confn+1 be the space of point configurations modulo translations. We can identify Confn+1 with
the complement of the (complexified) hyperplane arrangement of type An. Indeed, consider the quotient of
Cn+1 by the diagonally embedded copy of C. Then Confn+1 is the complement of the hyperplanes xi = xj
in this quotient.

The symmetric group Sn+1 acts freely on Confn+1 by permuting the points. The fundamental group of
Confn+1 /Sn+1 is the (n+ 1)-strand braid group Bn+1. The braid group acts on the set of (oriented) arcs.

Fix a point configuration a = (a0, . . . , an). Given a curve γ, we decompose it as a sequence of “pseudo-
straight segments” that we call its “spine.” We first describe this process informally, and then give the formal
definitions. Let γ have length ℓ. There may not be a curve isotopic to γ that has length ℓ. Nevertheless,
consider curves whose lengths approach ℓ. These curves approach a sequence of straight line segments that
bend at the marked points. This is the shape that the curve would take if it were made of a physical
string that was pulled tight while constrained to avoid the marked points (see Fig. 3). The “spine” of γ,
roughly speaking, is the sequence of these straight line segments. If the point configuration contains triples
of collinear points, we refine the notion of a spine by taking it to be a sequence of “pseudo-straight segments”
instead of straight line segments. A pseudo-straight segment from ai to aj , roughly speaking, is a curve that
follows the straight line segment from ai to aj except possibly swerving to avoid points of the configuration
that are in the way (see Fig. 2).

Definition 2.4. Given a configuration a = (a0, . . . , an) and i ̸= j, a pseudo-straight segment on a from ai
to aj is an arc from ai to aj whose length is |ai − aj |, the euclidean distance between ai and aj .

We denote by PS(a) the set of (unoriented) pseudo-straight segments on a.
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Figure 2. Several examples of pseudo-straight segments

Let s : [0, 1] → C be the standard parametrisation of the straight line segment from ai to aj . Given any
ϵ > 0, a pseudo-straight segment from ai to aj has a representative γ that is ϵ-close to s; that is, satisfies
|γ(t)− s(t)| < ϵ for all t ∈ [0, 1]. Therefore, the image of γ lies in an ϵ neighbourhood of the segment from ai
to aj . If no other point ak lies on the segment joining ai and aj , then s is the unique pseudo-straight segment
from ai to aj , up to isotopy. Otherwise, there are several (see Fig. 2). To represent such a pseudo-straight
segment, we may choose the curve that follows s except in a small neighbourhood of an intermediate point
ak, where it goes in a small semicircle around ak, either on the left or the right, and then rejoins s. If there
are r points of a on the open segment from ai to aj , then there are 2r pseudo-straight segments from ai to
aj . As a result, PS(a) is a finite set.

Remark 2.5. The paper [5] studies the combinatorics of pseudo-straight segments and their pointed pseu-
dotriangulations (which we define in the next section), in the case of a configuration that consists entirely
of collinear points. In [5], pseudo-straight segments are called wiggly arcs.

Definition 2.6 (Chains and collinear chains). By a chain of arcs, we mean a finite sequence of oriented
arcs (γ1, . . . , γk) such that the end point of γi is the starting point of γi+1. Let the start and end points of
γi be api−1

and api
respectively. We say that the chain is collinear if all γi are pseudo-straight segments and

the points ap0
, . . . , apk

lie on a line in order, that is, api
lies between api−1

and api+1
.

The spine of a curve is the chain obtained by “pulling the curve tight” around the marked points. A more
precise definition follows.

Definition 2.7 (Spine). Let a = (a0, . . . , an) be a configuration and let γ be an oriented arc on a. The
spine of γ, denoted by spine(γ), is the chain of pseudo-straight segments (γ1, . . . , γk) satisfying the following
properties.

(1) ℓ(γ) =
∑

i ℓ(γi).
(2) For any i, the chain (γi, γi+1) is not collinear.
(3) For any representatives si of γi and any ϵ > 0, the arc γ has a representative that is ϵ-close to the

concatenation of s1, . . . , sk.

See Fig. 3 for an illustration of the spine of an arc. The spine of an unoriented arc is the spine of one of
its orientations, up to reversal. Implicit in Definition 2.7 is the existence and uniqueness of spines, whose
proof we omit.

The definition of a spine has an obvious analogue for curves and multi-curves. Observe that for an curve,
the spine is unique only up to a cyclic rotation. We say that a pseudo-straight segment is an external edge
of a if it occurs as a component of the spine of the boundary-parallel curve.

2.2. Pointed pseudo-triangulations. Fix a point configuration a. The set of pseudo straight segments
that appear in the spine of a multi-curve satisfies some constraints. Identifying these constraints leads to
the notion of a pointed pseudo-triangulation (ppt). The goal of this section is to define ppts and construct
a simplicial complex associated to every ppt that acts as a parameter space for curves.
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Figure 3. The spine of the arc on the left (red) is the chain (γ1, . . . , γ6).

The notion of a ppt has appeared before in a different context—rigidity theory and motion planning in
robotics [27]. The simplest situation is when the points of a form the vertices of a convex polygon. Then, a ppt
is the same as a triangulation of the polygon. A more general situation is when a forms a non-degenerate (no
three collinear points) but not necessarily convex configuration. In this case, the notion of ppts is developed
in [27]. We extend the theory to incorporate collinear points. We note that the most extreme case of
collinearity, namely when all points of a lie on a single line, has also been studied previously [5].

Fix a configuration a = (a0, . . . , an) of distinct points in C. Recall that there are finitely many pseudo-
straight curves (as in Definition 2.4) with endpoints in a.

Definition 2.8 (non-crossing, pointed). Let T be a set of pseudo-straight segments with endpoints in a.

(1) We say that T is non-crossing if there exists a set of representatives for elements of T that are
pairwise non-intersecting except at the endpoints.

(2) We say that T is pointed at ai ∈ a if all the straight line segments underlying the pseudo-straight
segments incident to ai lie in an open half plane at ai. We say that T is pointed if it is pointed at
each ai ∈ a.

Definition 2.9 (Pointed pseudo-triangulations—ppt and ppt*). Let a be a point configuration in C.
A pointed pseudo-triangulation or ppt on a is a maximal collection of pseudo-straight segments on a that

is non-crossing and pointed.
A ppt* is a maximal collection of pseudo-straight segments on a that is non-crossing and pointed and

does not contain all external edges.

Owing to the maximality of a ppt, every ppt on a must contain all the external edges of a. So a ppt* is
simply a ppt minus one external edge.

We prove the following lemma for later use.

Lemma 2.10. Let n ≥ 1 and fix a point configuration a of n+1 points, and let T be a set of pseudo-straight
segments on a that is planar and pointed. Let e = |T |. Then e ≤ 2n− 1. In particular, a ppt on n+1 points
has at most 2n− 1 edges.

Remark 2.11. In the case of non-degenerate point configurations (no three points collinear) as well as
maximally degenerate configurations (all points collinear) of n + 1 points, it is known that every ppt has
exactly 2n− 1 edges (see, e.g. [5, 27]). We will prove in Proposition 3.16 that the same is true for all point
configurations. However, an upper bound is sufficient for the moment.

Proof. Let G be the undirected graph with vertex set V (G) = {a0, . . . , an} and edge set E(G) = T . We use
v(G) and e(G) to denote the sizes of V (G) and E(G), respectively, dropping G if it is clear from the context.
We want to prove that

e(G) ≤ 2v(G)− 3.

Fix a set of representatives of elements of T that are non-crossing and pointed. Then we have a embedding
of G in C. The complement of G in C is a disjoint union of regions, which we call faces.

Assume that G has no isolated points. We induct on the number of connected components of G. As the
base case, assume that G is connected.

Exactly one face is unbounded, and suppose that there are f bounded faces. We use a variant of the
Euler characteristic argument used, e.g., in [27, Theorem 2.4]. Euler’s formula gives the equation

(1) v − e+ f = 1.
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Since G is connected, every vertex is incident to at least one edge. Then the number of angles incident to
each vertex is exactly the valence of the vertex. Each angle is either convex (at most π) or reflex (greater
than π). Let us now count the angles in the graph in two different ways.

Summing over the vertices, we see that the total number of angles is the sum of the valences of the vertices.
On the other hand, the sum of the valences of the vertices is twice the number of edges. Thus

(2) total number of angles = 2e.

The pointedness condition implies that exactly one angle incident to each point is a reflex angle, and that
all other angles are strictly convex. Thus

(3) number of reflex angles = v.

The total number of convex angles is equal to the sum over the convex angles of every bounded face. Since
G is connected, a bounded face must be simply connected and therefore must have at least three edges.
Indeed, if it had only two edges, they would be isotopic to each other. Thus

(4) number of convex angles ≥ 3f.

Now we combine Eqs. (2) to (4) with Euler’s formula (1) and simplify to see that

e(G) ≤ 2v(G)− 3,

as desired.
Suppose G has more than one connected component. Let H ⊂ G be a connected component that is

innermost in the embedding of G in C; that is, no face of H ⊂ C contains another component of G. Let
a′ = a−V (H) and T ′ = T−E(H). Then T ′ consists of pointed and non-crossing pseudo-straight segments on
a′. Moreover, the elements of T ′ represent distinct pseudo-straight segments on a′, except for the following
possibility. If a bounded face of G−H ⊂ C contains the image of H and only has two edges, the two edges
represent the same pseudo-straight segment on a′. In any case, we have

e(G) ≤ e(G−H) + e(H) + 1.

We wish to apply the inductive hypothesis to H and G −H, but we must account for the possibility that
v(H) or v(G−H) is 1. If both v(H) and v(G−H) are at least 2, we apply the inductive hypothesis to both
and get

e(G) ≤ 2v(G−H)− 3 + 2v(H)− 3 + 1 < 2v(G)− 3.

If exactly one of v(H) or v(G−H) is 1, say the first, we apply the inductive hypothesis to G−H and get

e(G) ≤ 2(v(G)− 1)− 3 + 1 < 2v(G)− 3.

If both v(H) and v(G−H) are 1, then 0 = e(G) < 2v(G)− 3. □

3. The simplicial complex of pointed pseudo-triangulations

The aim of this section is to study the simplicial complex consisting of ppt*s or ppts on any point
configuration. We prove in Theorem 3.19 that there are piecewise-linear homeomorphisms between the
complexes associated to any two point configurations. Thus the braid group acts on these complexes in
a piecewise-linear way (Corollary 3.20). Moreover, we show in Corollary 3.21 that the complex of ppt*s
(resp. ppts) is a sphere (resp. a closed ball).

3.1. Construction and basic properties. We refer the reader to Section 2 for the definitions of the
objects used in this section.

Definition 3.1 (The complexes K∗(a) and K(a)). Let a be a point configuration in C. The simplicial
complexK∗(a) is the abstract simplicial complex whose maximal simplices are the ppt*’s on a. The simplicial
complex K(a) is the abstract simplicial complex whose maximal simplices are the ppts on a.

Recall that PS(a) is the set of pseudo-straight segments on a. Let ∆(PS(a)) = (R
PS(a)
≥0 − {0})/scaling

be the standard simplex on PS(a). We think of points of ∆(PS(a)) as non-negative real-valued functions
on PS(a) modulo simultaneous scaling. The geometric realisation of K∗(a) (resp. K(a)), denoted |K∗(a)|
(resp. |K(a)|), is then the subspace of ∆(PS(a)) consisting of the functions whose support is contained in a
ppt* (resp. ppt).
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Remark 3.2. We occasionally also need the unprojectivised spaces K̃∗(a) and K̃(a), defined simply as the

pre-images of |K∗(a)| and |K(a)| in R
PS(a)
≥0 − {0}.

Definition 3.3 (Support of a multi-curve). Let γ be a curve or an arc. The support of γ, denoted by
supp(γ), is the formal sum of the pseudo-straight segments that appear in the spine of γ. The support of a
multi-curve γ is the sum of the supports of its components. The set-theoretic support, denoted by | supp(γ)|,
is the set of pseudo-straight segments that appear with a positive coefficient in supp(γ).

Proposition 3.4. Let γ be a multi-curve on a configuration a.

(1) The set | supp(γ)| is non-crossing and pointed. That is, | supp(γ)| is contained in a ppt.
(2) Given any non-negative integer linear combination s of a pointed and non-crossing collection of

pseudo-straight segments, there exists a unique multi-curve γ such that supp(γ) = s.
(3) Conversely, the curve γ is admissible (does not have the boundary parallel curve as a component) if

and only if | supp(γ)| is contained in a ppt*.

Proof. Let γ = {c1, . . . , ck}. Choose representatives γi of ci that are pairwise disjoint. Observe that the
support of each ci is non-crossing and pointed. Then (1) follows from the pairwise disjointness.

We now prove (2). Given s, we explicitly construct a γ such that supp(γ) = s. The construction is very
similar to constructing a multi-curve on a surface from its train track (see, e.g., [25, § 1.2]). Recall that
PS(a) is the set of pseudo-straight segments on a. Suppose

s =
∑

α∈PS(a)

sα · α.

For every α, we begin by drawing sα many curves representing α. We assume that these curves are in close
proximity to the segment underlying α, and are pairwise disjoint except at the end points. We will construct
γ by joining these curves around the end-points (see Fig. 4). Consider a point a ∈ a. If there is only one
curve incident at a, we do nothing. Suppose there is more than one curve incident at a. Since the segments
appearing in s are pointed at a, we can choose two extremal curves α and β such that, locally near a, all
the other curves are contained in the conical region spanned by α and β. We connect α and β to form a
longer curve that follows α almost up to a (stops a little short), takes a circular detour around a (leaving
the conical region), and then joins and follows β (see Fig. 4). We repeat the procedure for the next pair of
extremal curves at a, and for all vertices a ∈ a. The end result is a multi-curve γ such that supp(γ) = s.
We leave it to the reader to convince themselves that this is the only multi-curve γ whose support is s.

To prove (3), assume that γ contains the boundary parallel curve as a component. Then | supp(γ)| contains
all external edges, and hence does not lie in a ppt*. Conversely, assuming that | supp(γ)| does not lie in a
ppt*, it must contain all external edges. From re-construction of γ from supp(γ) described above, we see
that γ contains the boundary parallel curve as a component. □

•

• •

•

• •

Figure 4. We construct a multi-curve from its support by first drawing the correct number
of underlying pseudo-straight segments (black) and then joining them by circular detours
(red) at the end-points.

As a consequence of this proposition, the support of a multi-curve is naturally an element of K̃(a). We
use the same notation to denote its image in |K(a)|.

Remark 3.5. Let ∂ ∈ |K(a)| be the support of the boundary parallel curve. Then it is not hard to see that
|K(a)| is piecewise-linearly homeomorphic to the cone over |K∗(a)| via a homeomorphism that sends ∂ to
the cone point.
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Given a configuration a, let M(a) (resp. M∗(a)) be the set of all multi-curves (resp. admissible multi-
curves) on a. The map γ → supp(γ) induces maps M(a)→ |K(a)| and M∗(a)→ |K∗(a)|.

Proposition 3.6. The image of M(a) is a dense subset of |K(a)| (and likewise for M∗ and K∗).

Proof. The image of M(a) is the set of points of |K(a)| with rational coordinates, which is dense. □

Remark 3.7. Recall that S(a) is the set of arcs on a. One can prove that the map S(a) → |K∗(a)|
is injective and has a dense image. Both injectivity and density follow from analysing the curve-joining
procedure in the proof of Proposition 3.4. Injectivity is easy; it follows from the observation that if γ is an
arc then for any n ≥ 2, the curve with support n supp(γ) is not an arc. Density is more involved, so we omit
its proof.

We now describe how K∗(a) and K(a) vary with a. More precisely, we show that a deformation from a
to b induces a piecewise linear homeomorphism from |K(a)| to |K(b)| that restricts to a piecewise linear
homeomorphism from |K∗(a)| to |K∗(b)|.

Let Γ: [0, 1]→ Confn+1 be a continuous path with Γ(0) = a and Γ(1) = b. We can deform arcs, curves,
and multi-curves along Γ. Such a deformation induces a bijection from arcs, curves, and multi-curves on a
to arcs, curves, multi-curves on b, respectively.

We say that relative positions of points remain unchanged along Γ if for all indices i, j, k and every t ∈ [0, 1],
the points Γ(t)i,Γ(t)j ,Γ(t)k are collinear if and only if they are collinear for t = 0. If relative positions of
points remain unchanged along Γ, then a pseudo-straight segment in a deforms along Γ to a pseudo-straight
segment in b. This deformation induces a simplicial isomorphism K(a) → K(b). Let M(a) → M(b) be
the bijection obtained by deforming (multi)-curves along Γ. In this case, it is easy to see that the following
diagram commutes:

M(a) M(b)

|K(a)| |K(b)|.

supp

∼

supp

∼

Our goal is to obtain a similar picture for paths that change relative positions. To do so, we analyse particular
paths called elementary deformations. An elementary deformation only moves one point in a way that does
not create any additional collinearities. The precise definition follows.

Definition 3.8. Let ℓ ∈ {0, . . . , n}. A continuous path Γ: [0, 1] → Confn+1 is an elementary deformation
at ℓ if

(1) Γ(t)i is constant for all i ̸= ℓ, and
(2) for all distinct i, j ∈ {0, . . . , n} − {ℓ}, if Γ(0)ℓ does not lie on the line spanned by Γ(0)i and Γ(0)j ,

then neither does Γ(t)ℓ for any t ≥ 0.

The reverse of an elementary deformation is an elementary degeneration.

Fix an elementary deformation Γ with a = Γ(0) and ã = Γ(1) (see, e.g. Fig. 5). A pseudo-straight segment
on ã degenerates to a pseudo-straight segment on a, yielding a map

degen: PS(ã)→ PS(a).

To understand what happens under deformation, we introduce the notion of a critical line. For distinct
i, j ∈ {0, . . . , n} − {ℓ}, we say that the line spanned by ai and aj is critical if it contains aℓ. Let γ be a
pseudo-straight segment on a. Unless both end points of γ lie on the same critical line, γ deforms to a
pseudo-straight segment on ã. If both end points of γ lie on a critical line, it is possible that γ does not
deform to a pseudo-straight segment on ã (see Fig. 5).

ã

• •
•

• •
a

• • • • •

Figure 5. Under an elementary deformation from a to ã, pseudo-straight segments may
(green) or may not (orange, red) deform to pseudo-straight segments.
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For γ ∈ PS(a), let deform(γ) be the curve obtained by deforming γ. Extend the map γ 7→ supp deform(γ)
linearly to obtain

(5) κ : RPS(a) → RPS(ã).

We make three observations. First, the following diagram commutes

(6)

M(a) M(ã)

R
PS(a)
≥0 R

PS(ã)
≥0 .

supp

deform

supp

κ

Second, if S ⊂ PS(a) is non-crossing and pointed, then the union of the set-theoretic supports of {deform(γ) |
γ ∈ S} is also non-crossing and pointed. In particular, if S is a ppt on a, then there exists a ppt T on ã
such that κ maps RS

≥0 to RT
≥0. Third, if S is a ppt* on a, then the same holds for a ppt* T on ã. The

last statement follows from chasing the boundary parallel curve in the diagram (6). As a result of the three
observations, we see that the map κ induces maps

(7)

|K(a)| |K(ã)|

|K∗(a)| |K∗(ã)|.

κ

κ

⊂ ⊂
3.2. Homeomorphisms between simplicial complexes of different point configurations. Let Γ be
an elementary deformation from Γ(0) = a to Γ(1) = ã. Our goal is to show that the maps κ defined above
are piecewise-linear homeomorphisms. (See Figure 1 for the simplest example of an elementary degeneration
followed by an elementary deformation.) For the proof, we need a construction to combine opposing pseudo-
straight segments.

Definition 3.9 (The # construction). Suppose s1 and s2 are pseudo-straight segments on a that lie on the
same critical line L, share a common end-point x, and approach x from opposite sides. Let x̃ ∈ ã be the
deformation of x ∈ a, and set s̃i = deform(si). Assume that the spines of s̃1 and s̃2 do not remain collinear
around x̃. The support of s̃1 and s̃2 spans a convex cone at x̃ whose limit under the degeneration to x is a
half-plane bounded by L. By the reflex side of L at x, we mean the opposite half-plane. Let s1#s2 be the
pseudo-straight segment on a obtained by following s1 almost up to x, taking a small semi-circular detour
around x on the reflex side, and then following s2 (see Fig. 6).

Note that the spine of the deformation of s1#s2 is the concatenation of the spines of the deformations of
s1 and s2.

• •

(reflex side)

x

•
s1 s2

s1#s2

Figure 6. We join two opposing segments s1 and s2 to get a longer segment s1#s2.

Let γ ∈ PS(a), and let (γ̃1, . . . , γ̃k) be the spine of the deformation of γ to ã. Let γi ∈ PS(a) be the
degeneration of γ̃i ∈ PS(a). Then all γi must lie in order on a single critical line L. Furthermore, we can
reconstruct γ from (γ1, . . . , γk) as follows:

γ = γ1#γ2# · · ·#γk.
It is easy to see that the # construction is associative. But we caution the reader that the reflex side of L
may be different for different intermediate points.

We now take up the task of proving that κ from (7) is a piecewise-linear homeomorphism. We fix a ppt
T on ã, and argue that the ppts S on a such that κ(S) ⊂ T give a linear subdivision of |T |. To do so, we
need an auxiliary notion of a faux-ppt.
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Definition 3.10. Let T ⊂ PS(ã) be a ppt. A faux-ppt for T is a subset U ⊂ PS(a) satisfying the following
conditions.

(1) The elements of U are non-crossing.
(2) The cardinality of U is the same as the cardinality of T .
(3) For every u ∈ U , the curve deform(u) is supported on T .
(4) The map κ : RU → RT induced by u 7→ supp deform(u) is injective.

Recall the degeneration map degen: PS(ã)→ PS(a). Then U = degen(T ) is a faux-ppt for T .
Note that κ : RU → RT maps RU

≥0 to RT
≥0. Recall that

|U | =
(
RU

≥0 − {0}
)
/scaling, and |T | =

(
RT

≥0 − {0}
)
/scaling.

Thus κ induces a map |U | → |T |, which we also call κ. The image of |U | is full-dimensional in |T | by the
injectivity assumption on κ. So, U cannot also be a faux-ppt for a different ppt T ′ ⊂ PS(a).

A faux-ppt may or may not be pointed. If it is not pointed, we describe a procedure that “splits” it in
two. The branching of each node in Fig. 7 is an example of such a split.

Fix a ppt T ⊂ PS(ã) and a faux-ppt U ⊂ PS(a) for T . Let s1 and s2 be two pseudo-straight segments in
U that lie on the same critical line L, share an endpoint x, and come to x from opposite directions. Let x̃ ∈ ã
be the deformation of x ∈ a. The supports of deform(s1) and deform(s2) are pointed at x̃. We say that s1
and s2 are extremal opposing edges if all other edges of T incident to x̃ lie in the cone spanned by deform(s1)
and deform(s2) at x̃. Suppose s1 and s2 are extremal opposing edges at x. Set U1 = U ∪ {s1#s2} − {s2}
and U2 = U ∪ {s1#s2} − {s1}.

Lemma 3.11. For i = 1, 2, the set Ui is a faux-ppt for T . Furthermore, κ(|U1|) and κ(|U2|) give a linear
subdivision of κ(|U |).

Proof. We check the four conditions in the definition of a faux-ppt. By the extremality of the pair, s1#s2
does not cross any element of U . So the first condition holds. Note that s1#s2 cannot already lie in U ; if
it did, then s1#s2 − s1 − s2 would be in the kernel of κ : RU → RT . As a result, both Ui have the same
cardinality as U . So the second condition holds. The spine of the deformation of s1#s2 is the concatenation
of the spines of the deformations of s1 and s2. So the third condition holds. Let V = U − {s1, s2}. Note
that

RUi = RV ×R{si,s1#s2} and RU = RV ×R{s1,s2}.

We have the map ϕi : R
Ui → RU that is the identity on RV , sends si to si, and sends s1#s2 to s1 + s2.

Then κ : RUi → RT is the composite of ϕi : R
Ui → RU and κ : RU → RT . Since ϕi is injective, the fourth

condition holds.
Finally, it is clear that the images of ϕi : |Ui| → |U | already give a linear subdivision of |U |. The last

statement follows by applying κ. □

Definition 3.12. Let U ⊂ PS(a) be a faux-ppt. We say that a pseudo-straight segment v ∈ PS(a) resolves
U if there exists a chain (γ1, . . . , γk) of edges in U such that

v = γ1# · · ·#γk.

We say that a subset V ⊂ PS(a) resolves U if each v ∈ V resolves U .

Remark 3.13. Implicit in the definition above is that the γi are pseudo-straight segments that lie in order
on the same line, and at each intermediate end-point, their deformations bend. Observe the following.

(1) Suppose that v resolves a faux-ppt U for T . Since κ : RU → RT is injective and κ(v) =
∑
κ(γi), the

chain (γ1, . . . , γk) is unique.
(2) If U is already a ppt, then it contains no opposing pseudo-straight segments, so there are no non-

trivial # joins of pseudo-straight segments of U . Thus any v ∈ PS(a) that resolves U must be an
element of U .

Lemma 3.14. Let U be a faux-ppt and let U1 and U2 be the faux-ppts obtained by splitting it as in Lemma 3.11.
Let V ⊂ PS(a) be non-crossing and pointed (for example, a ppt). If V resolves U , then V resolves U1 or V
resolves U2. Conversely, if V resolves U1 or U2 then V resolves U .
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•
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b ≥ d − c

•
• • • •

b ≤ d − c

c ≤ d

a ≥ b

•
• • • •

•
• • • •

•
• • • •

b − a ≥ d − c

•
• • • •

•
• • • •

a ≥ d − c − b + a

•
• • • •

a ≤ d − c − b + a

b − a ≤ d − c

c ≤ d

•
• • • •

c ≥ d

a ≤ b

degen(T )

degeneration
a b

c
d

Figure 7. We split a faux-ppt in two faux-ppts by fusing a pair of extremal edges. Starting
with a ppt T on ã, we apply this procedure applied repeatedly to the faux-ppt degen(T ).
The result is a tree of faux-ppts whose leaves are the ppts of a whose deformations are
supported on T .

Proof. Take a v ∈ V , and let γ = (γi) be the chain on U with v = γ1# · · ·#γk. If for all i, we have
γi ̸∈ {s1, s2}, then v resolves both U1 and U2. If two consecutive edges {γi, γi+1} are {s1, s2}, remove them
and replace them by s1#s2. The resulting chain has the same #-join, namely v. So v resolves both U1 and
U2.

Suppose γi = s1, but neither γi−1 nor γi+1 is s2. In this case, we say that v contains s1 “alone” (and
likewise for s2). If no v ∈ V contains s1 alone, then V resolves U2 (and likewise for s2). We show that V
cannot contain v, v′ such that v contains s1 alone and v′ contains s2 alone.

Let us analyse v ∈ V that contains s1 alone. Let γ be as before, and orient it so that in the induced
orientation, γi = s1 ends at x. There are two possibilities: either γ ends with s1 at x, or it continues with
γi+1 ̸= s2 that starts at x. In this case, by the extremality of the pair (s1, s2), the segment γi+1 must be
on the non-reflex side at x. Likewise, if v′ contains s2 alone, then either the corresponding γ′ ends at x or
continues with γ′i+1 ̸= s1 on the non-reflex side at x.

Suppose for contradiction that V contains v and v′ such that the corresponding deformed chains contain
s1 alone and s2 alone, respectively. Then v and v′ must cross or form an opposing pair at x (see Fig. 8).
Since V is non-crossing and pointed, this is impossible.
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The converse is straightforward. Suppose V resolves U1. For a v ∈ V , if the corresponding chain γ contains
s1#s2, we simply break it into (s1, s2). This procedure yields a chain in U with the same # join. □

•

(reflex side)

s1 s2
•

(reflex side)

s1 s2

•

(reflex side)

s1 s2
•

(reflex side)

s1 s2

Figure 8. If two pseudo-straight segments (red and blue) on a critical line are # joins of
chains that contain s1 alone and s2 alone, respectively, then they must cross or oppose.

Lemma 3.15. Let U be a faux-ppt on ã of cardinality 2n− 1. If S is a ppt on a that resolves U , then the
cardinality of S is also 2n− 1.

Proof. We induct on the number of pairs of opposing edges of U . If U has no such edges, then U is non-
crossing, pointed, and of maximum possible cardinality (see Lemma 2.10). So U is a ppt on a. The only ppt
that resolves U is U itself. The assertions follow.

If U has a pair of opposing edges, pick an extremal such pair and let U1 and U2 be the faux-ppts obtained
by splitting U as in Lemma 3.11. By Lemma 3.14, the ppt S resolves U1 or U2. We conclude by applying
the inductive hypothesis. □

As a consequence of Lemma 3.15, we get the following.

Proposition 3.16. Let a be any point configuration. Every ppt on a contains 2n− 1 edges.

Proof. Consider an elementary deformation ã of a. Let S be a ppt on a whose deformation is supported
on a ppt T of ã. Lemma 3.15 applied to U = degen(T ), we see that if T has 2n − 1 edges, so does S. By
a sequence of elementary deformations, we may deform a to a point configuration with no three collinear
points. For such configurations, it is known that every ppt has 2n− 1 edges. The result follows. □

Lemma 3.17. Let U be a faux-ppt on a for a ppt T on ã.

(1) Let p ∈ |K(a)|, and let V ⊂ PS(a) be the support of p. Then we have κ(p) ∈ κ(|U |) if and only V
resolves U .

(2) Let S1, . . . , Sm be ppts on a that resolve U . Then κ(|S1|), · · · , κ(|Sm|) are full-dimensional and give
a simplicial subdivision of κ(|U |).

Proof. We induct on the number of pairs of opposing edges in U .
Let us prove the base case, in which U has no opposing edges, and is thus a ppt. We prove the first

statement. For one direction, suppose that V resolves U . Then for each v ∈ V there is a chain (γ1, . . . , γk) in
U such that κ(v) =

∑
i κ(γi), and thus κ(v) ∈ κ(|U |). Now p is a convex linear combination of the elements

v ∈ V , and |U | is a convex set. Thus κ(p) ∈ κ(|U |) as well. Let us prove the other direction. Recall that κ
is induced by a linear map with rational coordinates. So it suffices to prove the statement assuming that p

has rational coordinates. Let p̃ ∈ Z
PS(a)
≥0 be an integer lift of p.

Let q ∈ |U | be such that κ(q) = κ(p). Let q̃ ∈ Z
PS(a)
≥0 be an integer lift of q. Recall that κ : |K(a)| → |K(ã)|

is induced by a linear map RPS(a) → RPS(ã). In (5) it was denoted κ, but for clarity, we denote that map
here as κ̃.
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Since κ(q) = κ(p), there exists positive integers m and n such that

κ̃(mq̃) = κ̃(np̃).

Let γq and γp be the unique multi-curves on a (as in Proposition 3.4) such that

supp(γq) = mq̃, and supp(γp) = np̃.

Since κ̃ commutes with supports of deformations (see (6)), we have

supp deform(γq) = supp deform(γp).

Since the support determines the multi-curve uniquely, we see that deform(γq) = deform(γp). But deforma-
tion is a bijection on (isotopy classes of) curves. So γq = γp. Note that the set-theoretic support of γp is the
same as the support of p. On the other hand, this is also the same as the set-theoretic support of q, which
is a subset of U . In particular, the support of p resolves U .

For the second statement, note that since U is a ppt, the only ppt that resolves U is U itself (see Re-
mark 3.13), and thus the subdivision asserted is trivial.

Having done the base case, we do the induction step. Choose a pair of extremal opposing edges in U , and
split U as U1 and U2 as in Lemma 3.11. Note that each Ui has fewer pairs of opposing edges than U .

We prove the first statement. By Lemma 3.11, we get that κ(p) ∈ κ(|U1|) or κ(p) ∈ κ(|U2|). By the
inductive hypothesis, the support of p resolves U1 or U2. So the support of p resolves U .

We now prove the second statement. By Lemma 3.14, a ppt S that resolves U resolves U1 or U2. By the
inductive hypothesis, κ(|S|) is full-dimensional. As a result, S cannot resolve both U1 and U2 (if it did, then
κ(|S|) ⊂ κ(|U1|) ∩ κ(|U2|), which is not full-dimensional). So the set of ppts that resolve U are partitioned
into two disjoint sets: those that resolve U1 and those that resolve U2. Using the inductive hypothesis and
that κ(|U1|) and κ(|U2|) form a simplicial subdivision of κ(|U |), we are done. □

We are now ready to prove the desired result for elementary deformations.

Proposition 3.18. Let Γ be an elementary deformation of a to ã. The maps

κ : |K(a)| → |K(ã)| and κ : |K∗(a)| → |K∗(ã)|

defined by γ 7→ supp deform γ are piecewise-linear homeomorphisms. In both cases, the images under κ of
the simplices in the source give a simplicial subdivision of the target.

Proof. We treat K first and then K∗. We know that κ is continuous and sends the simplices of |K(a)|
linearly to the simplices of |K(ã)|. It suffices to prove that for every maximal simplex ∆ of |K(ã)|, the map

κ : κ−1(∆)→ ∆

is a homeomorphism. In fact, it suffices to prove this after a simplicial subdivision on the target.
Let T be a ppt on ã. Then |T | is a maximal simplex in K(ã). Let S1, . . . , Sm be the ppts on a that

resolve degen(T ). By Lemma 3.17, κ(|S1|), . . . , κ(|Sm|) give a simplicial subdivision of |T |.
We take ∆ = κ(Si). By Lemma 3.17, v ∈ PS(a) satisfies κ(v) ∈ ∆ if and only if v ∈ Si. Therefore, we

get κ−1(∆) = |Si|. Since κ(|Si|) is full-dimensional, the map κ : |Si| → κ(|Si|) is a linear isomorphism.
To treat K∗, recall that by chasing the boundary parallel curve in the commutative diagram (6), we get

that κ sends |K∗(a)| to |K∗(ã)|. The same consideration shows that |K∗(a)| is in fact the pre-image of
|K∗(ã)|. So the isomorphism on K restricts to the isomorphism on K∗. □

Having treated elementary deformations, we now treat arbitrary motions in configuration space.

Theorem 3.19. Let Γ: [0, 1]→ Confn+1 be a continuous map with a = Γ(0) and b = Γ(1).

(1) Γ induces piecewise linear isomorphisms κΓ : |K(a)| → |K(b)| and κΓ : |K∗(a)| → |K∗(b)|.
(2) Let deformΓ : M(a) → M(b) be the bijection on multi-curves obtained by deforming along Γ. Then

the following diagram commutes

M(a) M(b)

|K(a)| |K(b)|.

supp

deformΓ

∼

supp

κΓ

∼
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(3) If Γ′ is a path homotopic to Γ by a homotopy that fixes the end-points, then Γ and Γ′ induce the
same piecewise linear isomorphism |K(a)| → |K(b)|.

See Fig. 1 for a picture of the simplest wall-crossing isomorphisms.

Proof. First let us prove all assertions for a path Γ that can be written as a concatenation of paths that do not
change relative positions, or are elementary degenerations/deformations (we call such paths “easy paths”).
Then the first assertion follows by composing the isomorphisms given by Proposition 3.18 and their inverses.
The second assertion is a result of the commutativity we have already observed in diagram (6). For the third
assertion, suppose that Γ′ is another easy path homotopic to Γ. Then the bijection deformΓ′ : M(b)→M(a)
is equal to deformΓ, the one induced by Γ. We also have a map κΓ′ : |K(a)| → |K(b)|. By the commutativity
of the diagram in the second assertion, the map κΓ′ takes the same values as the map κΓ on the image of
M(b). Since the image of M(b) is dense (Proposition 3.6), we conclude that κΓ′ = κΓ.

Now suppose that Γ is an arbitrary path. Then observe that it is homotopic (fixing endpoints) to an easy
path Γ′. Set κΓ to be κΓ′ . Then the first and second assertions are automatic by the previous arguments.
The third assertion follows from the previous argument that all homotopic easy paths induce the same map
κΓ′ , and thus the choice of Γ′ does not matter. □

The definitions of the complexes K(a), K∗(a), and their geometric realisations only depend on the un-
ordered point configuration underlying a. In other words, these simplicial complexes are well-defined on
Confn+1 /Sn+1. Recall that the fundamental group of Confn+1 /Sn+1 is the (n + 1)-strand braid group
Bn+1. Thus we obtain the following corollary.

Corollary 3.20. We get an action of the braid group Bn+1 = π1(Confn+1 /Sn+1,a) on |K(a)| and |K∗(a)|
by piecewise linear isomorphisms.

Proof. Fix a base point a ∈ Confn+1, and its image (also called a) in Confn+1 /Sn+1. Consider a path in
Confn+1 /Sn+1 from a to a. This is equivalent to considering a path in Confn+1 from a to another point a′

in its Sn+1 orbit. Since K(a′) = K(a) and K∗(a′) = K∗(a), Theorem 3.19 implies that this path induces

piecewise-linear isomorphisms |K(a)|
∼=−→ |K(a)| and |K∗(a)|

∼=−→ |K∗(a)|. By the third assertion in the
theorem, the isomorphism above is independent of the homotopy class of the path relative to its endpoints.
Thus the proof is complete. □

We can deduce the global topology of |K(a)| and |K∗(a)| by using Theorem 3.19 to reduce to, e.g., the
case of convex point configurations. This case has been extensively studied in the literature, particularly
in the context of cluster algebras. The simplicial complexes are more accessible in this case, because they
become the simplicial complexes associated to triangulations of convex polygons. We obtain the following
corollary.

Corollary 3.21. Let a be a configuration of (n + 1) points in C. Then |K(a)| is homeomorphic to the
(2n− 3)-ball. The subcomplex |K∗(a)| is the boundary of |K(a)|, and hence homeomorphic to the (2n− 4)-
sphere.

Proof. By Theorem 3.19, we may take a to be any configuration. Let us consider a convex configuration of
(n+1) points. That is, one where the points of a form the vertices of a convex polygon. In this case, pointed
pseudo-triangulations are simply triangulations. The subcomplex of K(a) whose elements only contain
interior diagonals of the polygon is called the cluster complex of type A, and its study was initiated in [11].
The case of an (n + 1)-gon corresponds to the cluster complex of type An−2. It is proved in [11, Corollary
1.11] that the geometric realisation of the cluster complex of type An−2 is a sphere of dimension n− 3.

It is not hard to see that the complex K(a) is an iterated cone over the cluster complex, in which we take
the cone by adding one external edge of the polygon at a time. Since there are n external edges, we see that
|K(a)| is a ball of dimension (2n− 3), and its boundary is a sphere of dimension (2n− 4), as desired.

Finally, it is also not hard to see in the convex case that |K∗(a)| is precisely the boundary of |K(a)|, as
follows. The maximal simplices of K(a) have size (2n−2). Consider a simplex S′ of size (2n−3), formed by
deleting an edge e from a maximal simplex S. If the edge e is an interior diagonal, then there is exactly one
other interior diagonal that crosses e, which is compatible with all elements of S′. Thus S′ is contained in
exactly two maximal simplices, and |K(S′)| is not on the boundary of |K(a)|. On the other hand, if e is an
external edge, then there is no other maximal simplex that contains S′, and thus |K(S′)| is on the boundary
of |K(a)|. The proof is complete. □
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4. Comparison of the ppt complex with projective measured foliations

Fix a configuration a. Let D be a closed disk containing all points of a and let D be the punctured
disk obtained by deleting from D small open disks around the marked points. Let MF(a) be the space of
measured foliations on D up to Whitehead equivalence, as defined in [10, § 11.1]. Let PMF(a) be MF(a)
modulo scaling. Then PMF(a) is piecewise-linearly homeomorphic to the (2n− 3)-sphere.

Recall that M∗(a) is the set of multi-curves on a that do not contain boundary parallel components. We
have natural maps M∗(a)→ |K∗(a)| and M∗(a)→ PMF(a).

Theorem 4.1. We have a piecewise-linear isomorphism

|K∗(a)| → PMF(a)

compatible with the maps from M∗(a).

The proof relies on the piecewise-linearity of intersection and occurrence functions, which we now define.
Let δ be either a simple closed curve on D or an arc on D whose end-points lie on the boundary. Given a

simple closed curve γ, let I(γ, δ) be the geometric intersection number of γ and δ, defined as the minimum
of the size of γ ∩ δ over all representatives in the corresponding isotopy classes. We extend the definition
to arcs on a as defined in Section 2.1 as follows. Given an arc γ joining two distinct marked points a, we
consider the simple closed curve 2 · γ and let

I(γ, δ) =
1

2
· I(2γ, δ).

Note that, for any such arc γ, we have I(γ, γ) = 0. We extend I(−, δ) to multi-curves by linearity.

Proposition 4.2. Let δ be either a simple closed curve on D or an arc on D whose end-points lie on the

boundary. The function I(−, δ) induces a piecewise-linear function on the unprojectivised complex K̃∗(a).
That is, there is a continuous piecewise-linear function

Iδ : K̃
∗(a)→ R≥0

such that for every multi-curve γ ∈M∗(a), we have

I(γ, δ) = Iδ(supp γ).

Proof. Consider a path in configuration space from a to b. By Theorem 3.19, this path induces a piecewise-

linear homeomorphism ϕ : K̃∗(a)→ K̃∗(b). Deforming along this path also induces a bijection ψ : M∗(a)→
M∗(b). So, the statement for ψ(δ) on b is equivalent to the statement for δ on a. By choosing ψ correctly,
we may bring a to a configuration of (n+ 1) collinear points and δ to one of the following curves/arcs: the
segment joining the first two marked points (red), a segment joining the first marked point to the boundary
(blue), a segment joining two points on the boundary with k points on the left and (n+1− k) points on the
right (orange), a simple closed curve enclosing the first k marked points (green); see the following diagram.
For each of these, the intersection number is a piecewise-linear combination of the occurrence functions
associated to the pseudo-straight segments on a (we omit the calculation). This combination defines the

required continuous piecewise-linear function on K̃∗(a).

0 1 2
· · · · · ·

n − 1 n

□

Fix a pseudo-straight segment s on a. Given a simple closed curve γ on D, let occ(γ, s) be the coefficient
of s in supp γ. In other words, occ(γ, s) is the number of occurencess of s in the curve obtained by pulling
γ tight.
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Proposition 4.3. Let s be a pseudo-straight segment on a. The function occ(−, s) induces a piecewise-linear
function on MF(a). That is, there is a continuous piecewise-linear function

occs : MF(a)→ R≥0

such that for every simple closed curve γ, we have

occ(γ, s) = occs(γ).

Proof. Consider a path in configuration space from a to b. We identify M∗(a) with M∗(b) via the bijection
given by deforming along the path.

Theorem 3.19 gives a piecewise-linear isomorphism K̃∗(a) to K̃∗(b) compatible with the supports of
multi-curves. In other words, the occurrence functions for pseudo-straight segments in b are continuous
piecewise-linear functions of the occurrence functions for pseudo-straight segments in a. Likewise, we also
have a piecewise-linear isomorphism MF(a) → MF(b). So it suffices to prove the proposition for a single
configuration.

We choose a to be the configuration of n + 1 points on a line. Let α1, α2, . . . , α2n−2 be the dotted arcs
and β1, . . . , βn the dashed arcs shown below.

β1

β2 βn−1

βn

α1

α2

α2n−3

α2n−2

0 1 2
· · ·

n − 2 n − 1 n

Pairing with these arcs gives continuous piecewise-linear functions a1, . . . , a2n−2 and b1, . . . , bn on PMF(a).
The occurrence function of a pseudo-straight segment on a can be written as continuous piecewise-linear
combination of ai and bj (we omit the details of this calculation). □

We now have the tools to prove Theorem 4.1.

Proof of Theorem 4.1. We explain the maps in both directions. A point of PMF(a) is determined by the
vector of intersection numbers with all curves (up to scaling). The map

|K∗(a)| → PMF(a)

is defined by

x 7→ [Iδ(x)],

where Iδ is the piecewise-linear function from Proposition 4.2.
The map

PMF(a)→ |K∗(a)|
is defined by

x 7→ [occs(x) | s ∈ PS(a)],

where occs is the piecewise-linear function from Proposition 4.3.
To check that these maps are mutual inverses, we may restrict to (multi)-curves, which form a dense subset

of |K∗(a)| and PMF(a). On curves, the fact that these are inverse maps follows from their definitions. □

5. Categorical setup and background

This section contains some general categorical background we need for the remainder of the paper. In Sec-
tion 5.1, we briefly discuss Bridgeland stability conditions on general triangulated categories, first introduced
in [6].

In Section 5.2 we consider 2-Calabi-Yau (2-CY) categories associated to undirected graphs, or more
generally, Coxeter diagrams. For our applications, we will focus on the categories of type A, versions of which
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have been extensively studied over a number of years [2, 3, 4, 22, 29, 32]. We will also consider the categories
associated to associated to rank two Coxeter systems, which have been studied, e.g., in [9, 13,14,15].

In Section 5.3, we recall a result of Khovanov–Seidel [22] for the 2-CY category of type A. This result
associates a spherical object of this category (up to shift) to every arc on a linear point configuration. We
also generalise this procedure for point configurations lying in a fundamental domain for the symmetric
group action on configurations.

5.1. Bridgeland stability conditions. We assume familiarity with the notion of a Bridgeland stability
condition on a triangulated category, which was introduced and developed in [6]. We only recall the notation
and key results. Let C be a triangulated category with Grothendieck group K0(C). A stability condition τ
on C consists of

(1) a central charge Zτ , which is a group homomorphism K0(C)→ C; and
(2) a slicing Pτ , which is a collection of full abelian subcategories Pτ (ϕ) of C, index by ϕ ∈ R.

The slicing and the central charge are required to satisfy several compatibility conditions, which we omit.
For each ϕ ∈ R, the objects of Pτ (ϕ) are called semistable of phase ϕ. An object of Pτ (ϕ) is said to be stable
of phase ϕ if it is a simple object of the category Pτ (ϕ). Every object X in C admits a unique filtration whose
factors are τ -semistable objects of strictly decreasing phase. This filtration is called the Harder–Narasimhan
(HN) filtration. For any interval I ⊂ R, we let Pτ (I) be the full subcategory of C consisting of objects whose
HN factors have phase in I. For any ϕ ∈ R, the subcategories Pτ ([ϕ, ϕ+ 1)) and Pτ ((ϕ, ϕ+ 1]) are abelian,
and are moreover hearts of bounded t-structures on C. In particular, ♡ = P ([0, 1)) is the heart of a bounded
t-structure on C and Zτ sends non-zero-objects of ♡ to the upper half plane H.

Conversely, [6, Proposition 5.3] says that a stability condition C is uniquely specified by

(1) the heart ♡ of a bounded t-structure on C; and
(2) a central charge Z : K0(♡)→ C that sends each object of ♡ to H,

subject to the condition that every object of ♡ has an HN filtration. The above data gives a stability
condition τ with Pτ ([0, 1)) = ♡ and Zτ = Z.

Let Stab(C) be the set of Bridgeland stability conditions on C. By [6, Corollary 1.3], every connected
component of Stab(C) has the structure of a complex manifold such that the forgetful map τ 7→ Zτ is a local
isomorphism to a linear subspace of Hom(K0(C),C).

5.2. 2-Calabi–Yau categories associated to Coxeter systems. We recall the definitions of 2-CY cat-
egories associated to simply laced Coxeter systems. These categories have many equivalent definitions,
especially in the case of finite (ADE) types. In these types, they can be defined using minimal resolutions of
Kleinian surface singularities or using pre-projective algebras (see, e.g. [8, §1]). We give a formulation using
zig-zag algebras.

Fix a field k of characteristic zero. Simply laced Coxeter systems can be described in terms of unlabelled
undirected graphs. To this end, let Γ be an undirected graph that has no self-loops or multiple edges. Let
Γdbl be its doubled quiver, which has two directed edges (i, j) and (j, i) for every undirected edges {i, j} in
Γ. Let kΓdbl denote the path algebra of Γdbl, graded by path length. For concreteness, choose an ordering
(1, . . . , n) of the vertices of Γ, and set the sign of a directed edge (i, j) in Γdbl to be

sij =

{
1, i < j;

−1, i > j.

Definition 5.1. The zig-zag algebra A(Γ) of Γ is the quotient of kΓdbl by the following relations.

(1) All length-3 paths are set to zero.
(2) All length-2 paths whose source and target are different are set to zero.
(3) For a vertex i and two vertices j, k that are connected to i by edges of Γ, set

sij(i, j)(j, i) = sik(i, k)(k, i).

Remark 5.2. The definition above is of the signed zig-zag algebra, considered in [3, Definition 6.4], as
opposed to the un-signed zig-zag algebra that has appeared earlier in the literature (see, e.g. [16]). The
signed zig-zag algebra gives better categorical properties, as explained in [3, Section 6], and different choices



20 ASILATA BAPAT, ANAND DEOPURKAR, AND ANTHONY M. LICATA

of signs give isomorphic algebras [3, Proposition 6.5]. However, the signed and the un-signed zig-zag algebras
are isomorphic in type An, which is the main example for this paper.

The length-zero paths (i) in A(Γ) are primitive idempotents, and give rise to indecomposable projective
modules Pi = A(Γ)(i). Regard A(Γ) as a differential graded (dg) algebra where all differentials are zero.
Let K(dgmod-A(Γ)) be the category of finite-dimensional dg modules over the dg algebra A(Γ). Set CΓ to
be the smallest full and strict triangulated subcategory of K(dgmod-A(Γ)) containing the objects Pi. As
explained earlier, the category Cn is the category C(Γ) in the case where Γ is a graph of type An.

The category Cn is a k-linear, triangulated, and (strongly) 2-Calabi–Yau category. The extension closure
of the objects Pi in Cn is an abelian category ♡std, which is the heart of a bounded t-structure on Cn. We
call ♡std the standard heart of Cn, and the induced bounded t-structure the standard t-structure on Cn. The
objects Pi are simple objects of ♡std.

Remark 5.3. The 2-CY category associated to a more general Coxeter system is defined in [15, Section
4.7], and has been studied further in [9, 13]. In this case, the correct analogue of the zigzag algebra is
a particular algebra object in a fusion category associated to the Coxeter system. The associated 2-CY
category is again defined as a subcategory of the homotopy category of dg modules over this zigzag algebra
object. In Section 7.1 we give a few more details about the case we are most interested in, namely the case
of rank two Coxeter systems.

5.3. The Khovanov–Seidel reconstruction. Let Cn be the 2-CY category associated to a graph of type
An. We recall a construction due to Khovanov–Seidel [22] that associates a spherical object of Cn to an arc
on a configuration of n+ 1 points on a line.

Let a = (a0, . . . , an) be a configuration such that all points lie on a single line. For each i ∈ {1, . . . , n}
consider the line ℓi perpendicular to the segment ai−1ai and passing through its midpoint. We always draw
arcs on a such that they have minimal intersections with the lines ℓi. Let α be an arc. We can reconstruct
a dg module Pα (up to triangulated shift) from this arc, as explicitly described below. In fact, the segment
aiai+1 is associated to the object Pi (up to triangulated shift), and the construction is compatible with the
action of the braid group as proved in [22]. So we can uniquely determine the object (up to shift) associated
to any arc.

To describe the reconstruction explicitly, orient the arc α, and follow it from its start to its end point.
Suppose that α successively intersects the lines (ℓi1 , . . . , ℓim). As a vector space, the dg module Pα is a direct
sum of objects Pij ⟨gj⟩, as j ranges over 1 to m. The integers gj are grading shifts, which are determined
inductively as described below. Simultaneously, we inductively describe the differential on Pα, whose terms
always map between Pij ⟨gj⟩ and Pij+1⟨gj+1⟩ for some j.

(1) As the base case, set g1 = 0. (Note that this is an arbitrary choice, and varying it shifts the whole
resulting object Pα.)

(2) For the induction step, assume that we have already described gij as well as the component of the
differential between Pij−1⟨gj−1⟩ and Pij ⟨gj⟩. Consider the portion of αij of α that starts from its
intersection with ℓij and ends at its intersection with ℓij+1 . This portion is contained in the region
either before the first line ℓ1, between two successive lines, or beyond the last line ℓn. Each such
region contains a single point am of the configuration, and we can detect whether the portion αij

travels around the point am clockwise or anti-clockwise in this region.
(a) If αij travels clockwise around am, the corresponding differential maps Pij ⟨gj⟩ to Pij+1⟨gj+1⟩

by the unique non-trivial map between them.
(b) If αij travels anti-clockwise around am, the corresponding differential maps Pij+1

⟨gj+1⟩ to
Pij ⟨gj⟩ by the unique non-trivial map between them.

In either case, the grading shift gj+1 is uniquely determined by gj .

Now let us consider more general configurations. Recall that Sn+1 acts on Confn+1 by permuting the
coordinates. Denote by H the half-closed upper-half plane in C, defined as

H = {z ∈ C | z ̸= 0 and arg(z) ∈ [0, π)}.
Let U+

n+1 ⊂ Confn+1 be the subset of configurations (a0, . . . , an) where ai − ai−1 ∈ H for 1 ≤ i ≤ n. Then

U+
n+1 is a fundamental domain for the action of Sn+1. Fix a = (a0, a1, . . . , an) ∈ U+

n+1.
Consider an almost-horizontal line ℓ through the point a0 with slope −ϵ for 0≪ ϵ < 1, and let ℓ′ be the

almost-vertical line perpendicular to ℓ passing through a0. Choose ϵ sufficiently small so that none of the
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lines aiaj are parallel to the line ℓ. Consider a path a(t) in Confn+1 that starts at a(0) = a, and translates
every point ai along the direction of ℓ so that all points of b = a(1) lie on ℓ′. Such a degeneration is
illustrated in Fig. 9.

•
a0

• a1

• a2

•a3

ℓ

ℓ′

degenerate−−−−−−−→

••

•

•

b0

b1

b2

b3

ℓ

ℓ′

Figure 9. A degeneration of the configuration a to the linear configuration b.

Such a degeneration gives a bijection from arcs on a to arcs on b. Since the points of b all lie on a line,
any arc on b corresponds to an object of Cn up to shift via the Khovanov–Seidel construction. We also set
this to be the object associated to the corresponding arc on a.

Proposition 5.4. Let a = (a0, a1, . . . , an) ∈ U+
n+1. Then the construction described above gives a map from

arcs on a to spherical objects of Cn up to triangulated shift, independent of the choice of ϵ. Furthermore, the
straight-line segment from ai to ai+1 corresponds to the object Pi up to triangulated shift.

Proof. The bijection from arcs on a to arcs on b is independent of ϵ, provided it is sufficiently small. It is
immediate from the construction that the straight line segment from ai to ai+1 corresponds to the object Pi

up to triangulated shift. □

6. Stability conditions on Cn via point configurations

Let Cn be the 2-CY triangulated category associated to the An graph. Section 5.3 gave a correspondence
from arcs on a point configuration to spherical objects in Cn. In this section, we enhance this correspondence
to Bridgeland stability conditions and HN filtrations. First, we recall the explicit description of the space of
stability conditions on Cn as the universal cover of configuration space. Next we identify the semistable ob-
jects of a given stability condition as special kinds of curves. The main result of this section is Theorem 6.10,
which describes the HN filtration of any spherical object in terms of curves on point configurations.

Remark 6.1. Some of the ideas of this section originate in the older paper [32] by Thomas. The paper [32]
considers configurations of points that form the vertices of a convex polygon. In such cases, [32, Section 5]
constructs corresponding standard stability conditions, and shows that the semistable (= stable) spherical
objects correspond to straight-line segments. Our results extend this further to HN filtrations and arbitrary
point configurations.

6.1. Standard stability conditions. Recall that the Grothendieck group K(Cn) is the lattice of type An.
So Hom(K(Cn), C) is the complexified lattice of type An, which we identify with Cn = Cn+1/C. Recall that
Confn+1 is the complement of the root hyperplanes in the same space. By the discussion around Theorem
6.4 of [32], the central charge of any stability condition on Cn takes non-zero values on the roots. As a result,
we have a map

π : Stab(Cn)→ Confn+1

τ 7→ Zτ .
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Explicitly, we can write the map as follows. Recall the indecomposable objects P1, P2, . . . , Pn of Cn. Then

(8) π(τ) =

0, Zτ (P1), . . . ,
∑
j≤i

Zτ (Pj), . . . ,
∑
j≤n

Zτ (Pj)

 .

The following proposition is a combination of [32, Theorem 6.4] and the fact that Stab(Cn) is connected (see,
e.g., [1, 19,20]).

Proposition 6.2. The map π : Stab(Cn)→ Confn+1 is a universal covering map.

The covering map π intertwines the Bn+1 action on Stab(Cn) and the Sn+1 action on Confn+1. Denote
by H the half-closed upper-half plane in C, defined as

H = {z ∈ C | z ̸= 0 and arg(z) ∈ [0, π)}.
Let U+

n+1 ∈ Confn+1 be the fundamental domain for the action of Sn+1 that consists of configurations
(a0, . . . , an) where ai − ai−1 ∈ H for 1 ≤ i ≤ n. We restrict our attention to a particularly accessible subset
of Stab(Cn), constructed via the following proposition.

Proposition 6.3. Let a = (a0, . . . , an) be a point of U+
n+1 ⊂ Confn+1. Then there is a unique stability

condition τ ∈ π−1(a) satisfying the following conditions.

(1) The objects P1, P2, . . . , Pn are τ -stable.
(2) The τ -phases of the objects P1, P2, . . . , Pn lie in the interval [0, 1).

Conversely, for any stability condition τ satisfying these two properties, its image π(τ) ∈ Confn+1 under the
covering map (8) lies in U+

n+1.

We say that a stability condition is standard if it satisfies the conditions of Proposition 6.3.

Proof. The category Cn has a standard heart ♡std, namely the extension closure of the objects P1, . . . , Pn.
The Grothendieck group K0(Cn) = K0(♡std) is the free abelian group generated by the classes of the Pi. We
specify τ by writing down the obvious central charge Zτ on K0(♡std):

Zτ : Pi 7→ (ai − ai−1).

Since ♡std has finite length, this central charge function automatically enjoys the HN property, and therefore
(uniquely) specifies the stability condition τ .

The converse is clear. □

6.2. Semistable objects and Harder–Narasimhan filtrations via curves. Fix a standard stability
condition τ on Cn. In this case, Pτ ([0, 1)) is exactly ♡std. Recall that ♡std is the extension closure of the
objects P1, . . . , Pn in Cn, and also these objects are simple in ♡std. This section has two aims.

(1) Describe all “τ -stable curves” and “τ -semistable curves” in ♡std. These are curves that correspond
to τ -stable and τ -semistable spherical objects lying in ♡std.

(2) Given a spherical object corresponding to a curve, describe its HN filtration with respect to τ in
terms of semistable curves.

Towards the first aim, we write down a categorical algorithm to reconstruct all stable and semistable spherical
objects in ♡std, and then apply it to curves. The algorithm we write here is a slight generalisation of [4,
Proposition 4.2]. The statement in [4] assumes that τ is generic, in the sense that it has no indecomposable
semi-stable spherical objects that are not already stable. Our generalisation omits this assumption, but is
proved almost identically.

Let us recall some notation. Let α be an arbitrary positive root of type An. Regarding α as an element
of the root lattice and hence of the Grothendieck group K0(Cn), the central charge Zτ (α) lives in the upper
half plane H. Consider two subsets of H, defined as

Hα,τ
+ = {z ∈ H | arg z ≥ argZτ (α)};

Hα,τ
− = {z ∈ H | arg z ≤ argZτ (α)},

where arg takes values in [0, π).
Consider an expression

α = si1si2 . . . sin−1
(αin),
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where αin is a simple root. Associate to this expression its root sequence R = (Ri1 , . . . , Rin), where

Rik = si1 · · · sik−1
(αik).

Note that Rin = α.

Proposition 6.4. Consider the setup above for a fixed expression

α = si1si2 . . . sin−1(αin).

Consider a sign vector ϵ = (ϵ1, . . . , ϵn−1), where ϵk ∈ {+1,−1} for each k. Let Xϵ be the object

Xϵ = σϵ1
i1
· · ·σϵn−1

in−1
(Pin),

where σk is the spherical twist in the object Pk.

(1) The object Xϵ is τ -semistable if and only if Zτ (Rik) ⊂ Hα,τ
ϵk

for each k. Explicitly, we require

argZτ (Rik) ≥ argZτ (α) if ϵk = +1,

argZτ (Rik) ≤ argZτ (α) if ϵk = −1.

(2) Furthermore, the object Xϵ is τ -stable if and only the inequalities above are strict for each k.

Finally, objects constructed as above are the only possible τ -semistable (resp. τ -stable) spherical objects of
class α in the Grothendieck group.

Proof. The proof of [4, Proposition 4.2] extends easily to this more general situation to yield proofs of parts
(1) and (2).

Let us prove that the objects constructed as above are the only possible τ -semistable (resp. τ -stable)
spherical objects of class α in the Grothendieck group. In type An (or more generally, any finite type), all
spherical objects in the category Cn lie in the braid group orbit of one of the basic objects Pi [4,19,20]. Thus
an arbitrary semistable object X of class α can be written as β(Pi) for some braid word β. Passing to the
Grothendieck group, we obtain an expression of the form α = w(αi) for some sequence of simple reflections
w. Now we apply parts (1) and (2) to see that the signs in the word β must satisfy the constraints mentioned
in parts (1) and (2). □

Armed with the semistability and stability criterion above, we return to describing indecomposable
semistable and stable spherical objects of ♡std. We will make use of the following observation.

Lemma 6.5.

(1) Let αj be a simple root of type An. Then for any i < j, we have an equality of roots:

sisi+1 · · · sj−1(αj) = sjsj−1 · · · si+1(αi).

(2) Let Pj be the jth standard simple object of ♡std. For any i < j and a set of indices ϵi, . . . , ϵj−1 ∈
{+1,−1}, we have an equality of objects of Cn:

σϵi
i · · ·σ

ϵj−1

j−1 (Pj) = σ
−ϵj−1

j σ
−ϵj−2

j−1 · · ·σ−ϵi
i+1(Pi).

(3) Consider a configuration (a0, . . . , an) in the fundamental domain, and let pj be the straight line arc
joining aj−1 to aj. Then we have an equality of arcs:

σϵi
i · · ·σ

ϵj−1

j−1 (pj) = σ
−ϵj−1

j σ
−ϵj−2

j−1 · · ·σ−ϵi
i+1(pi).

Proof. Let us prove the second assertion; the other two are analogous. We prove the result by induction. As
the base case, it is easy to check directly that

σ
ϵj−1

j−1 (Pj) = σ
−ϵj−1

j (Pj−1).

For the induction step, consider the left hand side σϵi
i · · ·σ

ϵj−1

j−1 (Pj) and rewrite it as

σϵi
i · · ·σ

ϵj−1

j−1 (Pj) =
(
σ
−ϵj−1

j σ
ϵj−1

j

)
σϵi
i · · ·σ

ϵj−1

j−1 (Pj).

Noting that σ
ϵj−1

j commutes with all factors but the last, we obtain

σ
−ϵj−1

j

(
σϵi
i · · ·σ

ϵj−2

j−2

)
σ
ϵj−1

j σ
ϵj−1

j−1 (Pj).
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It is clear from the base case calculation that σ
ϵj−1

j σ
ϵj−1

j−1 (Pj) = Pj−1. Thus we see that

σϵi
i · · ·σ

ϵj−1

j−1 (Pj) = σ
−ϵj−1

j σϵi
i · · ·σ

ϵj−2

j−2 (Pj−1).

By applying the inductive hypothesis to the smaller expression σϵi
i · · ·σ

ϵj−2

j−2 (Pj−1), we obtain the desired
result.

□

Proposition 6.6. Let a = (a0, . . . , an) ∈ U+
n+1. Let τa be the stability condition corresponding to a described

in Proposition 6.3. An indecomposable spherical object is semistable (resp. stable) with respect to τa if
and only if can be reconstructed via Proposition 5.4 from a pseudo-straight (resp. straight) segment on the
configuration a.

Proof. Fix a as in the proposition. For brevity, we write τa as τ in the remainder of this proof. Let X be
an indecomposable semistable spherical object in ♡std. Its class α = [X] in the Grothendieck group is a
positive root of the An root system. Thus we have α = αi + αi+1 + · · ·+ αj for some i ≤ j. Also recall that
for each i, the object Pi is stable in ♡std of class αi.

First suppose that i = j; that is, [X] = αi = [Pi]. In this case, let us show that X = Pi. The hom-pairing
between X and Pi can be computed as

⟨X,Pi⟩ =
∑
i

(−1)j dimHom(X,Pi[j]) = ⟨αi, αi⟩ = 2.

Since X and Pi are both in ♡std, there are no negative-degree maps between them in either direction. The
2-Calabi–Yau property of Cn now implies that the only possible non-zero morphisms from X to Pi lie in
degrees 0, 1, and 2. The fact that ⟨X,Pi⟩ = 2 implies that either Hom0(X,Pi) ̸= 0 or Hom2(X,Pi) =
Hom0(Pi, X) ̸= 0. Since Pi is a simple object of the standard heart ♡std, we see that Pi is either a quotient
or a sub-object of X, which means that there exists a short exact sequence in ♡std that contains Pi and X
as adjacent objects. It is either of the form

0→ Pi → X → Y → 0

or of the form

0→ Y → X → Pi → 0

for some Y ∈ ♡std. However, since [X] = [Pi] in the Grothendieck group, we have [Y ] = 0 in the Grothendieck
group, which can only happen if Y = 0. Therefore X = Pi.

Otherwise, [X] = αi + · · ·+ αj for i < j. In this case, we have a (minimal) expression

α = sisi+1 · · · sj−1(αj),

where sk ∈ Sn+1 is the root reflection corresponding to the simple root αk. By Proposition 6.4, we know
that there is a sign vector (ϵi, . . . , ϵj−1) such that

X = σϵi
i · · ·σ

ϵj−1

j−1 (Pj),

and Zτ (Rk) ⊂ Hα,τ
ϵk

for each k. Let pℓ be the straight line segment joining aℓ−1 to aℓ. The object X is
associated to the arc

x = σϵi
i · · ·σ

ϵj−1

j−1 (pj) = σ
−ϵj−1

j σ
−ϵj−2

j−1 · · ·σ−ϵi
i+1(pi),

where the second equality is a consquence of Lemma 6.5. We claim that x is isotopic to a pseudo-straight
segment joining ai−1 to aj . Using that x is obtained from pi by successive twists in pi+1, . . . , pj , we can
describe it as follows. Start with the curve y that is the concatenation of pi, . . . , pj . This is not an arc as
it passes through the marked points ai, . . . , aj−1. For ℓ ∈ {i, i + 1, . . . , j − 1} in order, we modify y in a
small neighbourhood of aℓ by swerving it so that it avoids aℓ. Instead of following pℓ all the way to aℓ, we
stop close to it, take a circular detour until we reach pℓ+1, and then continue along pℓ+1. The detour is
counter-clockwise if ϵℓ = 1 and clockwise if ϵℓ = −1 (see Fig. 10). Let D be the closed region in the plane
bounded by the curve y and the segment aiaj . Note that the following are equivalent:

(1) the vector aℓ − ai in the upper half plane is strictly to the left (resp. strictly to the right) of aj − ai;
(2) a small counter-clockwise (resp. clockwise) detour around aℓ lies in the region D;
(3) Zτ (Rℓ) lies in the open part of Hα,τ

ϵℓ
.
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• a1

•a2

•
a3

•
a4

•
a5

•a6
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•a2
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•
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•
a5

•a6

=

Figure 10. Construction of the semistable curve σ1σ2σ3σ
−1
4 (p5) = σ5σ

−1
4 σ−1

3 σ−1
2 (p1).

Here, the third point follows from Lemma 6.5, by observing again that

Rℓ = sisi+1 · · · sℓ−1(αℓ) = sℓsℓ−1 · · · si+1(αi).

In particular, if all ϵℓ are chosen as in Proposition 6.4, then all detours at points outside the segment aiaj
lie in R. Therefore, the region of the plane bounded by the segment aiaj and x does not contain any points
of the configuration outside the segment aiaj . As a result, x can be isotoped to be arbitrary close to the
segment aiaj . That is, x is pseudo-straight.

Conversely, any pseudo-straight segment from ai to aj has a representative x that is a modification of the
curve y obtained by taking small circular detours around the intermediate points aℓ. Since the segment is
pseudo-straight, the detours at all points outside of aiaj must lie in R. Otherwise, the interior of the region
bounded by x and the segment aiaj would contain points aℓ not on the segment aiaj , contradicting that x
is isotopic to curves arbitrary close to the segment aiaj . By the equivalence of the three conditions above
and Proposition 6.4, the object X = σϵi

i · · ·σ
ϵj−1

j−1 (Pj) associated to x is semi-stable.

Now note that X is stable if and only if Zτ (Rℓ) lies in the open part of Hα,τ
ϵℓ

for every ℓ. This occurs if
and only if the vector al − ai is not parallel to aj − ai for any ℓ, which occurs if and only if there is no point
aℓ on the segment aiaj . Finally, this occurs if and only if the semistable curve x we construct is a straight
segment. □

Let us now describe the HN filtration of an arbitrary arc in terms of semistable (i.e. pseudo-straight) arcs.
We will do this by explicitly using the chain complexes produced by the Khovanov–Seidel reconstruction
theorem, and arguing directly with properties of these chain complexes.

First, we write down a straightforward but useful observation, whose proof we omit. It is convenient to
think of a chain complex X• as a graded vector space with a differential ∂ : X• → X• that raises graded
degree by 1. If we have a decomposition of graded vector spaces X• = X•

1 ⊕ X•
2 , then ∂ has components

∂ij : X
•
i → X•

j for i, j ∈ {1, 2}.

Lemma 6.7. Consider a complex (X•, ∂). Suppose that X• = X•
1 ⊕X•

2 as graded vector spaces, and that
∂21 = 0. Then (X•

1 , ∂11) and (X•
2 , ∂22) are themselves chain complexes, and we have an exact sequence of

chain complexes

0→ (X•
2 , ∂22)→ (X•, ∂)→ (X•

1 , ∂11)→ 0.

Now consider a configuration (a0, . . . , an) ∈ U
+

n+1. Recall that any arc joining two distinct points among
(a0, a1, . . . , an) can be “pulled tight” around these points. The arc then breaks up along its spine, as defined
in Definition 2.7 and illustrated in Fig. 3. Each element of the spine is a pseudo-straight segment, and thus
corresponds to a τ -semistable object. In fact, we can uniquely augment the spine to record the relative phase
of each element in the spine.
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Definition 6.8. Let a = (a0, . . . , an) be a configuration and let γ be an oriented arc from ai to aj ,
and let (γ1, . . . , γk) be its spine. The phase-augmented spine (or just augmented spine) of γ is the tuple
((γ1, φ1), . . . , (γk, φk)) defined as follows.

(1) φ1 ∈ [0, 2) is (1/π) times the angle made by the underlying straight vector of γ1 with the horizontal.
(2) For every i > 0, the quantity φi − φi−1 is defined to be (1/π) times the signed angle from the

underlying straight vector of γi−1 to the underlying straight vector of γi. We assume that φi−φi−1 ∈
[−1, 1) for every i > 1. Note also that φi ̸= φi−1 for any i.

Let s be a pseudo-straight segment whose associated Khovanov–Seidel complex in ♡std is X•. Given an
phase-augmented pseudo-straight segment (s, φ); that is, an orientation on s together with an arbitrary real
number φ ∈ R, associate to it the Khovanov–Seidel complex X•[n], where n = ⌊φ⌋.

With the convention above, the complex associated to γ and the complexes associated to the (γi, φi) are
compatible with each other and also with τ , in the following sense.

Lemma 6.9. Let γ be an oriented arc with augmented spine ((γ1, φ1), . . . , (γr, φr)). Let (X•, ∂) be a choice
of a Khovanov–Seidel complex associated to γ. For each i, let (X•

i , ∂i) be the Khovanov–Seidel complex
associated to (γi, φi).

(1) For every i, the τ -semistable object Xi has phase φi.
(2) For some integer m, we have a decomposition X•[m] =

⊕
iX

•
i of graded vector spaces, satisfying

the following properties.
(a) For every i, the component ∂ : X•

i → X•
i agrees with ∂i.

(b) For any i, j such that |i− j| > 1, the component ∂ : X•
i → X•

j is zero.
(c) For any i, j such that |i−j| = 1, the component ∂ : X•

i → X•
j is non-zero if and only if φi < φj.

Proof. This can be deduced by carefully examining the Khovanov–Seidel construction. □

The following theorem states that the indecomposable pieces of the HN factors of the Khovanov–Seidel
complex associated to any arc are just the spherical objects associated to its augmented spine.

Fix a configuration (a0, . . . , an) ∈ U
+

n+1. Let γ be an arc on this configuration, and orient γ so that if
it has start and end points ai and aj respectively, then i < j. Let X• be a complex that corresponds to γ
under the Khovanov–Seidel construction.

Theorem 6.10. Let γ and X• be as above. Let ((γ1, φ1), . . . , (γk, φk)) be the augmented spine of γ. Let X•
i

be the Khovanov–Seidel complex associated to the augmented pseudo-straight segment (γi, φi). Then there is
some integer m such that for any φ ∈ R, the HN factor of X•[m] of phase φ is precisely the direct sum of
all Xi for which φi = φ.

Proof. We inductively construct the HN filtration of X•. By replacing X• by a shift if necessary, assume
that we have a direct sum decomposition of graded vector spaces X• =

⊕r
i=1X

•
i satisfying the properties

in Lemma 6.9(2).
Let S ⊂ {1, · · · , r} be the set of i such that φi = min(φ1, . . . , φr). Consider an i ∈ S. By Definition 6.8,

we have φi±1 ̸= φi, and therefore φi±1 > φi. In particular, (i± 1) /∈ S. By Lemma 6.9(2c), the components
of ∂ taking X•

i±1 to X•
i are zero. By Lemma 6.9(2b), the components of ∂ between X•

i and X•
j for |i− j| > 1

are all zero. Now apply Lemma 6.7 to the decomposition

X• =

(⊕
t/∈S

X•
t

)
⊕

(⊕
t∈S

X•
t

)
.

We obtain an exact sequence of chain complexes as follows.

(9) 0→

(⊕
t/∈S

X•
t , ∂

)
→ (X•, ∂)→

(⊕
t∈S

X•
t , ∂

)
→ 0.

Since the indices in S are separated by at least 2, Lemma 6.9(2b) implies that the components of ∂ between
distinct summands of

⊕
t∈S X

•
t are zero. Therefore, the last term of the sequence is in fact a direct sum of

complexes
⊕

t∈S(X
•
t , ∂t). Set A1 =

⊕
t∈S(X

•
t , ∂t). Note that A1 is a direct sum of semi-stable sphericals of

the same phase.
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The exact sequence (9) gives rise to a distinguished triangle(⊕
t/∈S

X•
t , ∂

)
→ (X•, ∂)→ A1

+1−−→

in C. Now we inductively apply the same procedure to
(⊕

t/∈S X
•, ∂
)
. Namely, at the ith step, we peel off

the portion of minimum phase and call it Ai. After at most r steps, we obtain a filtration of X with factors
As, . . . , A1 where

(1) each Aj is a direct sum of semistable indecomposable objects X•
t of the same phase, say φ(Aj).

(2) for each j, we have φ(Aj) > φ(Aj−1).

We have thus constructed the HN filtration of X•, and it has the desired properties by construction. □

Remark 6.11. Let X• be the spherical object associated to the curve γ. Choose an orientation of γ and
let (γ1, . . . , γn) be the spine of γ (see Definition 2.7). Theorem 6.10 says that the HN factors of X• are
precisely the semi-stable spherical objects corresponding to γ1, . . . , γn (up to shifts). The phase order of the
HN factors, however, is not the natural geometric order of the γi’s.

Corollary 6.12. Let X be a spherical object of Cn and let τ be a stability condition on Cn. Then the
τ -semistable HN factors of X are direct sums of semistable spherical objects.

Proof. Any stability conditions is in the braid group orbit of a standard stability condition. So we may take
τ to be standard. Then the statement follows from Theorem 6.10. □

Let a be a configuration and τ = τa the corresponding standard stability condition. Recall that we have
the ppt* complex K∗(a) from Definition 1.5 and the complex of semistable sphericals Στ from Definition 1.1.

Corollary 6.13. The bijection between pseudo-straight segments on a and τ -semistable spherical objects (up
to shift) given by Proposition 6.6 induces an isomorphism between K∗(a) and Στ .

Proof. By Propositions 3.4 and 3.6, ppt*s are precisely the maximal collections of pseudo-straight segments
that appear when an arc is pulled tight. So the result follows from Theorem 6.10. □

7. The simplicial complex for rank two Coxeter systems

In Section 5.2 we gave the construction of the 2-CY category associated to a simply-laced Coxeter system.
As mentioned in Remark 5.3, the construction generalises to give a 2-CY category for every finite rank
Coxeter system. The aim of this section is to explain how to generalise the definition of the simplicial
complex Στ and recover analogues of the piecewise-linear homeomorphisms of Section 3 in the setting of
rank two Coxeter systems.

7.1. The 2-CY category of a rank two Coxeter system. Fix a rank two Coxeter system I2(n), with
the following Coxeter diagram.

• •n

We sketch the definition of the associated 2-CY category C2(n) below; for more details see [15, §4] and
citations therein. However, the following points are sufficient to understand the simplicial complex Στ .

• As a C-linear triangulated category, the category C2(n) is equivalent to the 2-CY category Cn−1 of
type An−1, studied in Section 6. The additional structure on C2(n) is an action of a fusion category
called the Temperley–Lieb–Jones category.

• As a result, it is natural to restrict our attention to fusion-equivariant stability conditions on C2(n).
Let TLJn denote the Temperley–Lieb–Jones category at a 2n-th root of unity. TLJn is a semi-simple fusion
category. A Z-graded enhancement of TLJn has a particular algebra object A(I2(n)) called the zig-zag
algebra of type I2(n). We may regard A(I2(n)) as a dg algebra object with trivial differential. Now we
consider the category of dg modules over this dg algebra object, and proceed as in simply laced type to
define the associated 2-CY category C2(n). This category naturally carries a (right) action of TLJn.

The monoidal structure on TLJn induces a natural product on the Grothendieck group of TLJn. Thus
TLJn has a Grothendieck ring K0(TLJn), which acts on the Grothendieck group K0(C2(n)) of C2(n).
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Remark 7.1. The construction of C2(n) is a generalisation of the simply-laced construction detailed in Sec-
tion 5.2. Indeed, the (usual) zig-zag algebra is an algebra object in the category of Z-graded vector spaces, and
the Grothendieck ring of the category of vector spaces (which is isomorphic to Z) acts on the Grothendieck
ring of the associated 2-CY category.

7.2. Fusion-equivariant stability conditions. The space of stability conditions Stab(C2(n)) has a distin-
guished closed submanifold consisting of the stability conditions that are TLJn-equivariant, whose meaning
we now explain.

We say that a slicing is TLJn-equivariant if each subcategory defined by the slicing is closed under the
action of TLJn. To describe TLJn-equivariant central charges, we choose an action of K0(TLJn) on C, as
follows. There is an isomorphism

K0(TLJn) ∼= Z[x]/∆n−1(x),

where ∆n−1(x) is the (n − 1)th normalised Chebyshev polynomial of the second kind. The assignment
x 7→ 2 cos(π/n) thus yields a ring homomorphism from this ring to R. This homomorphism known as the
Frobenius–Perron dimension FP. We let K0(TLJn) act on C via the map FP. Then we say that a central
charge is TLJn-equivariant it intertwines the K0(TLJn) actions on K0(C2(n)) and on C.

We say that a stability condition on C2(n) is fusion-equivariant if its slicing and central charge are TLJn-
equivariant as described above. We refer to [9, 13,15] for more details.

Let P(Stab(C2(n))) denote the quotient of the space of fusion-equivariant stability conditions by the
action of C. Let us recall the basic topological and combinatorial structure of the space P(Stab(C2(n))). We
summarise the main points in the theorem below, which is a compilation of results from [3,13].

Theorem 7.2. Let n ≥ 2 be a positive integer. We have the following statements.

• The space P(Stab(C2(n))) is homeomorphic to an open 2-dimensional disc.
• The disc P(Stab(C2(n))) is tiled by n-gons without their vertices, such that the edges of the n-gon
consist of stability conditions that lie on a wall.

• The vertices of the n-gons lie on the boundary of the disc, and are in bijection with the orbits of the
spherical objects under the action of TLJn as well as the shift functor.

The theorem above is proven for n = 3 in [3], where the relevant fusion category is just the category
of vector spaces, and in [13] for other values of n, where the action of TLJn plays an important role. The
case n = ∞ is also worked out in [3]: in this case, almost all statements of the the above theorem hold,
except that ∞-gons that tile the disc all have an accumulation point on the boundary, which is a vertex
corresponding to a semi-rigid (rather than spherical) object.

The theorem above has several nice consequences, illustrated in Fig. 11. In particular, recall that the
vertices of the n-gons that tile P(Stab(C2(n))) are labelled by spherical objects of C2(n), modulo shifts and
the action of TLJn.

Proposition 7.3. We have the following properties.

• If τ is an off-the wall stability condition, then it lies in the interior of an n-gon. The τ -stable objects
are the vertices of this n-gon.

• If τ ′ is an on-the-wall stability condition, then it lies on an edge that borders two adjacent n-gons.
The τ ′-semistable objects are the vertices of the (2n−2)-gon formed as the union of these two n-gons.
Among these, the τ ′-stable objects are the two vertices of the edge containing τ ′.

In order to study the simplicial complex Στ , we need to understand the HN factors of spherical objects.
The following results achieve this goal, and are proved using a tool called HN automata constructed in [3,13].
Fix a fusion-equivariant stability condition on C2(n). In what follows, we consider semistable objects up to
the action of TLJn and the shift functor.

Theorem 7.4. In the setup above, any spherical object in C2(n) has at most two distinct HN factors.

Theorem 7.5. In the setup above, suppose that A and B are two distinct semistable spherical objects that
appear together in the HN filtration of a spherical object X. We have the following.

(1) If the chosen stability condition τ is off-the-wall, then A and B are connected by an edge of the n-gon
containing τ in its interior.
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(2) If the chosen stability condition τ ′ is on-the-wall, then A and B are connected by an edge of the
(2n− 2)-gon containing τ ′ in its interior.

(3) In each case, A and B are precisely the endpoints of the edge of the polygon that separates X and τ .

A1 = B1

A2 = B2

A3

A4

A5

B3

B4

B5

X

τ

τ ′

Figure 11. Pentagonal tiling of P(Stab(C2(5))). τ is an off-the-wall stability condition,
and τ ′ is an on-the-wall stability condition. The five objects Ai are τ -stable. The objects Ai

together with the objects Bi (altogether eight) are τ
′-semi-stable. Among these, the objects

A1 = B1 and A2 = B2 are τ ′-stable. The τ -HN filtration of the object X contains A1 and
A2. The τ

′-HN filtration of X contains B3 and B4.

7.3. The simplicial complex Στ in rank 2. The tiling of P(Stab(C2(n))) from Theorem 7.2, together
with Theorems 7.4 and 7.5, immediately give a description of the simplicial complexes Στ for different
stability conditions, as well as an intuitive picture of the piecewise-linear homeomorphisms between them.

By Theorem 7.2, the spherical objects of C2(n) lie on the S1 boundary of P(Stab(C2(n))). In particular,
the semi-stable spherical objects of a fusion-equivariant stability condition τ correspond to points on this
S1. Let Pτ be the 1-dimensional simplicial complex whose vertices are these τ -semistable spherical points,
and whose edges are the arcs of the boundary S1 connecting adjacent points. To avoid confusion: note that
both the vertices and edges of Pτ lie completely on the boundary; this is in contrast to the polygons which
tile P(Stab(C2(n))), which have their vertices on the boundary and their edges in the interior.

Theorem 7.6. There is an isomorphism of simplicial complexes from Στ to Pτ .

Proof. The vertices of Στ are the τ -semistable spherical objects, by definition. By Proposition 7.3, these
are in bijection with the vertices of Pτ . The edges of Στ are pairs of vertices that can appear together as
HN factors of a single spherical object. By Theorem 7.5, these correspond precisely to the edges of Pτ .
By Theorem 7.4, there are no higher-dimensional cells in Στ . □

Let τ be an off-the-wall stability condition, and let τ ′ be an adjacent on-the-wall stability condition. That
is, if τ lies in the interior of a tiling polygon, then τ ′ lies on one of the edges of that polygon.

Proposition 7.7. In the setup above, there is a piecewise-linear homeomorphism from Στ to Στ ′ , which is
compatible with the HN supports of spherical objects.

Proof. We describe the map from Στ ′ to Στ . We write the vertices of Στ as A1, . . . , An, clockwise. Assume
τ ′ lies on the wall joining An and A1. We denote the vertices of Στ ′ by A1 = B1, A2, . . . , An−1, An =
Bn, Bn−1, . . . , B2 clockwise. The map sends a vertex of Στ ′ to its τ -HN support. We extend this linearly to
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edges. Note that the map is the identity on the vertices that are common to both Στ and Στ ′ ; moreover,
one can check that the τ -HN support of Bi is

n− i
gcd(n− i, i− 1)

A1 +
i− 1

gcd(n− i, i− 1)
An.

The only thing remaining to check is that this map is compatible with HN supports, meaning that the τ ′

support vector of a spherical object X is taken to the τ ′ support of X; this is a consequence of the fact that
the τ -HN filtration of a spherical object X refines the τ ′-HN filtration of X. This refinement fact is proven
using the machinery of HN automata in [3, 13]. Now is easy to check that this map is a piecewise-linear
isomorphism. □

As a result of Theorem 7.6, the simplicial complexes Στ , for different stability conditions τ , may be thought
of as different simplicial decompositions of a single circle, which is the boundary of the stability manifold.
For this reason, Theorem 7.6 and Proposition 7.7 are perhaps best understood visually. For example, the
image below continues the example from Fig. 11, and draws each of the simplicial complexes Στ and Στ ′ as
simplicial decompositions of the boundary circle.

A1

A2

A3

A4

A5

X

A1 = B1

A2 = B2

A3

A4

A5

B3

B4

B5

X

Figure 12. Simplicial complexes in type I2(5). The first image is the pentagon Στ cor-
responding to the off-the-wall stability condition τ , whose stable objects correspond to the
boundary points A1, A2, A3, A4, A5. The spherical object X corresponds to a point on the
A1A2 edge of that pentagon. The second image is the octagon Στ ′ associated to the on-the-
wall stabiltiy condition τ ′. The object X is now a point on the B3B4 edge of that octagon.
The PL homeomorphism Στ ′ → Στ is linear on each edge of Στ ′ ; for example, it takes the
edge B3B4 into a portion of the edge A1A2.

Remark 7.8. The complexes Στ described above are in the case of 2-CY categories of finite rank 2 Coxeter
systems I2(n) for n <∞. However, essentially the same analysis applies in the study of the 2-CY category of
type I2(∞). See [3], where P(Stab(C2(∞))) and its compactification are described. In particular, the tiling
of P(Stab(C2(∞))) is now by∞-gons, and the vertices of each individual∞-gon have an accumulation point
– which is not a vertex corresponding to a spherical object – on the boundary. Using this description, one
can show that the simplicial complex Στ is homeomorphic to R1 ∼= S1−{pt}. We expect something similar
to happen in other affine types.

8. Determining objects via their Harder–Narasimhan factors

In this section, we prove that in a 2-CY category, a spherical object is determined by the ordered sequence
of its HN factors. Towards this goal, we prove results about the factors in a filtration of an object that may
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be of independent interest. Fix throughout a k-linear hom-finite triangulated category C, that admits a
dg-enhancement.

We recall the Hom spectral sequence developed in Appendix A for the particular case of a two-step
filtration. Suppose that we have a two-step filtration of an object X, as follows.

0 X1 X2 = X

A1 A2

+1 +1

α ,

By Proposition A.2, we have a spectral sequence with E1 page

E1(p, q) =
⊕
k

Homp+q(Ap+i, Ai)

that converges to Homp+q(X,X). Note that E1(p, q) must be zero if p /∈ {−1, 0, 1}. Thus the E1 page is
concentrated in three vertical columns indexed by p ∈ {−1, 0, 1}, with differential mapping horizontally:
E1(p, q)→ E1(p+ 1, q). Abbreviating Homj(−,−) as (−,−)j , the E1 page looks as follows.

(10)

...
...

...
...

...

0 (A1, A2)
q (A1, A1)

q+1 ⊕ (A2, A2)
q+1 (A2, A1)

q+2 0

0 (A1, A2)
q−1 (A1, A1)

q ⊕ (A2, A2)
q (A2, A1)

q+1 0

0 (A1, A2)
q−2 (A1, A1)

q−1 ⊕ (A2, A2)
q−1 (A2, A1)

q 0

...
...

...
...

...

An immediate consequence of the spectral sequence is the “Mukai lemma”. The following is a strengthening of
the version due to Huybrechts, Macŕı, and Stellari as [18, Lemma 2.7], but the main idea has been attributed
in that paper to Mukai [23]. For variants of this lemma, see also [7, Lemma 12.2] and [17, Corollary 2.3].

Lemma 8.1. Consider a distinguished triangle

A1 → X → A2
+1−−→ .

Suppose that Hom0(A1, A2) = 0 and Hom2(A2, A1) = 0. Then we have

dimHom1(A1, A1) + dimHom1(A2, A2) ≤ dimHom1(X,X).

Proof. Regard the triangle as a two-step filtration of X with factors A1 and A2. By Proposition A.2 we
have a spectral sequence for Hom•(X,X) whose E1 page is (10). We show that the incoming and outgoing
differentials at (p, q) = (0, 1) vanish on the E1 page as well as all subsequent pages. On the E1 page, the
incoming differential at (0, 1) is

Hom0(A1, A2)→ Hom1(A1, A1)⊕Hom1(A2, A2),

and the outgoing differential is

Hom1(A1, A1)⊕Hom1(A2, A2)→ Hom2(A2, A1).

By our hypothesis, we have Hom0(A1, A2) = Hom2(A2, A1) = 0, and so both differentials are zero. On the
subsequent pages, the incoming and outgoing differentials at (0, 1) have source or target beyond the range
−1 ≤ p ≤ 1, and hence are automatically zero.

We conclude that Hom1(A1, A1)⊕Hom1(A2, A2) survives until the E∞ page. The statement follows. □

The lemma above applies most readily to Harder–Narasimhan filtrations in a 2-CY category. We deduce
the following corollary.
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Corollary 8.2. Let C be a k-linear hom-finite triangulated category with a dg enhancement. Suppose also
that C is 2-Calabi–Yau, and fix a stability condition on C. Let X be an object such that Hom1(X,X) = 0.
Consider its HN filtration

0 = X0 → X1 → · · · → Xn = X,

with factors Ai. Then for each i, we have

Hom1(Xi, Xi) = Hom1(Ai, Ai) = 0.

Proof. Consider the triangles Xi−1 → Xi → Ai
+1−−→. We have Hom0(Xi−1, Ai) = 0 for phase reasons. Thus

by the 2-CY property, we also have Hom2(Ai, Xi−1) = 0. Now we can apply Lemma 8.1 iteratively to the
triangles above, starting at i = n and going down to i = 1. □

The two-step spectral sequence has applications beyond the Mukai lemma, which we now explore. For
these applications, we need a more refined understanding of the differentials. The next few lemmas provide
this understanding.

Lemma 8.3. Let C be a k-linear hom-finite triangulated category with a dg enhancement. Consider a
distinguished triangle

A1 → X → A2
α−→ A1[1]

such that Hom0(A1, A2) = 0 and Hom1(X,X) = 0. Then the element α ∈ Hom1(A2, A1) generates
Hom1(A2, A1) as a bimodule for the left action of Hom0(A1, A1) by post-composition and right action of
Hom0(A2, A2) by pre-composition.

Proof. Again, regard the given distinguished triangle as a two-step filtration with factors A1 and A2, and
consider the E1 page (10) of the spectral sequence. The outgoing differential at (p, q) = (0, 1) is

δ : (A1, A1)
0 ⊕ (A2, A2)

0 → (A2, A1)
1,

(f, g) 7→ fα− αg.

Since (A1, A2)
0 = 0 by assumption, the cokernel of δ survives on the E∞-page. However, by assumption,

(X,X)1 = 0, so the cokernel of δ must be zero. The image of δ is contained in the bimodule generated by
α, so the proof is complete. □

We briefly digress to prove a technical fact about endomorphisms of cyclic modules over finite dimensional
algebras. It is used in the proof of our next lemma about the uniqueness of triangles.

Lemma 8.4. Let A be a finite-dimensional algebra over an infinite field k. Let V be a cyclic left A-module.
Let r ∈ A such that the linear map v 7→ rv from V → V is invertible. Then there is an invertible r̃ ∈ A such
that r̃v = rv for every v ∈ V .

Proof. Given a left A-module M and r ∈ A, we let rM : M →M be the k-linear map m 7→ rm.
Fix a surjection of left A-modules A → V and let I be the kernel. Then we have a filtration of left

A-modules 0 ⊂ I ⊂ A with factors I and V . This filtration is preserved by left-multiplication by any element
of A.

Let r ∈ A be as in the statement. Then rV is an isomorphism. If rI is also an isomorphism, then rA is
an isomorphism, and thus r ∈ A is invertible. If this is not already the case, we modify r to r̃ such that
r̃V = rV and r̃I is invertible.

To construct r̃, we let f(x) be the minimal polynomial of the linear map rV . We claim that r̃ = r+λf(r)
for a sufficiently generic λ satisfies the desired properties. Observe that for any λ, we have r̃V = rV . So we
only need to check that r̃I is invertible. Let {µi} be the eigenvalues of rI in an algebraic closure of k. Then
the eigenvalues of rI +λf(r)I are µi+λf(µi). Note that f(0) = det(rV ) ̸= 0; so µi and f(µi) are never both
zero. We simply choose λ in the infinite field k so that µi + λf(µi) ̸= 0 for any i. □

Lemma 8.5. Let C be a k-linear hom-finite triangulated category with a dg enhancement. Let α : A2 → A1[1]
and β : A2 → A1[1] be morphisms that fit into exact triangles

A2
α−→ A1[1]→ X

+1−−→ and A2
β−→ A1[1]→ X ′ +1−−→ .

Suppose that both α and β generate Hom1(A2, A1) as a left Hom0(A1, A1) module. Then the two triangles
are isomorphic.



A SPHERE OF SPHERICAL OBJECTS 33

Proof. Since α is a generator of Hom1(A2, A1), and β ∈ Hom1(A2, A1), we can find an element g ∈
Hom0(A1, A1) such that β = gα. By applying Lemma 8.4 to the algebra Hom0(A1, A1), we may assume
that g is invertible. We then have a commuting square

A2 A1[1]

A2 A1[1]

α

id g

β

,

where the vertical maps are isomorphisms. It follows that we have an isomorphism X
∼=−→ X ′ which makes

the triangles isomorphic. □

We now have the tools to prove the main result of this section. The setup is as follows: k is an infinite
field; C is a k-linear 2-CY hom-finite triangulated category with a dg enhancement; τ is a stability condition
on C in which every τ -semistable spherical object is τ -stable.

Theorem 8.6. Consider the setup above. Let X be a spherical object with HN filtration

0→ X0 → X1 · · · → Xn = X,

with factors Ai. Let W be another spherical object with HN filtration

0→W0 →W1 · · · →Wn =W,

which also has factors Ai. Then X ∼=W .

Proof. We prove the result by induction on the length of the filtration. Let us first tackle the base case of a
2-step filtration. Note that X0 = A0 =W0. So we have distinguished triangles

A0 → X1 → A1
α−→ A0[1] and A0 →W1 → A1

β−→ A0[1].

Both of these triangles satisfy the hypotheses of Lemma 8.3, and hence α and β both generate Hom1(A1, A0)
as a Hom0(A0[1], A0[1]) − Hom0(A1, A1) bimodule. However, Hom0(A1, A1) = k because A1 is spherical.
Therefore both α and β generate Hom1(A1, A0) as a left Hom0(A0[1], A0[1]) module. We are now in the
setting of Lemma 8.5, and we see that the two distinguished triangles above are isomorphic. In particular,

there is an isomorphism X1

∼=−→W1 compatible with the filtration.
For the induction step, consider the triangles

Xi−1 → Xi → Ai
+1−−→ and Wi−1 →Wi → Ai

+1−−→ .

By induction, we may identify Wi−1 with Xi−1 and obtain distinguished triangles

Xi−1 → Xi → Ai
α−→ Xi−1[1] and Xi−1 →Wi → Ai

β−→ Xi−1[1].

By Corollary 8.2, we know that Hom1(Xi−1, Xi−1) = Hom1(Xi−1[1], Xi−1[1]) = 0. Thus the triangles
above satisfy the hypotheses of Lemma 8.3. Moreover, since Ai is spherical, we know that Hom0(Ai, Ai) =
k, and thus the maps α and β satisfy the hypotheses of Lemma 8.5. Therefore we obtain a compatible

isomorphism Xi

∼=−→Wi. The induction step is complete. As a result, X ∼=W . □

Appendix A. A spectral sequence for homomorphisms between filtered objects

Given two filtered objects of a triangulated category, we construct a spectral sequence that begins with
the homomorphisms between the factors of the filtration and converges to the homomorphisms between the
objects. We use this spectral sequence in the proof of Theorem 8.6. This construction is surely known to
the experts; for instance, it is similar to the one considered in [28, Theorem 2.4]. Nevertheless, we could not
find the precise result in the literature.

We begin with a simpler setting. Let A be an abelian category and K(A) the category of bounded chain
complexes on A with the morphisms given by chain maps up to homotopy. Suppose we are given objects
A1, . . . , An of K(A). An iterated cone of A1, . . . , An is an object of K(A) constructed as follows. If n = 1,
then the only such object is A1. If n = 2, then such an object is the cone of a morphism A2[−1] → A1. If
n = 2, then such an object is the cone of a morphism A3[−1]→ A2, where X2 is an iterated cone of A1, A2.
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In general, an iterated cone of A1, . . . , An is the cone of a morphism An[−1] → Xn−1, where Xn−1 is an
iterated cone of A1, . . . , An−1.

Let X be an iterated cone of A1, . . . , An. Unravelling the definition, we see that

X = Cone(An[−1]→ Cone(An−1[−1]→ · · · → Cone(A2[−1]→ A1) · · · )).
Let Xi be the object obtained at the i-th step of the above construction. That is,

Xi = Cone(Ai[−1]→ Cone(Ai−1[−1]→ · · · → Cone(A2[−1]→ A1) · · · )).
Then X0 = 0 and Xn = X and we have an exact triangle

Xi−1 → Xi → Ai
+1−−→ .

Putting the maps Xi−1 → Xi together gives an ascending filtration

0 = X0 → X1 → X2 → · · · → Xn = X

whose associated graded is gri(X•) = Ai.
Let us describe the complex X more explicitly. For i = 1, . . . , n and an integer a, let Aa

i denote the a-th
chain group of Ai, so that Ai is the complex

· · · → Aa
i → Aa+1

i → · · · .
Then the a-th chain group Xa of X is the direct sum

(11) Xa =

n⊕
i=1

Aa
i .

With this direct sum decomposition, the differential Xa → Xa+1 is lower triangular—it maps Aa
i to⊕

i′≤iA
a+1
i′ . The diagonal component Aa

i → Aa+1
i is (up to sign) the differential of Ai; the other com-

ponents depend on the morphisms used in taking the cones.

Proposition A.1. Let A1, . . . , An and B1, . . . , Bm be objects of K(A). Suppose X is an iterated cone of
A1, . . . , An and Y is an iterated cone of B1, . . . , Bm. Then we have a spectral sequence whose E1 page is

E1(p, q) =
⊕
k

Homp+q(Ak+p, Br)

that converges to Homp+q(X,Y ).

By our convention, the differential on the Er page goes from (p, q) to (p+ r, q − r + 1).

Proof. Consider the complex C = Hom(X,Y ). Then Homn(X,Y ) is the n-th cohomology Hn(C).
Using the direct sum decomposition of the chain groups of X in terms of the chain groups of Ai from (11)

and a similar description for Y , we get

Ck =
⊕

b−a=k

Hom(Xa, Y b)

=
⊕

b−a=k

⊕
i,j

Hom(Aa
i , B

b
j ).

The differential sends Hom(Aa
i , B

b
j ) to the direct sum⊕

i′≥i

Hom(Aa−1
i′ , Bb

j )⊕
⊕
j′≤j

Hom(Aa
i , B

b+1
j′ ).

For ℓ ∈ Z, set

Ck
ℓ =

⊕
b−a=k

⊕
i−j≥ℓ

Hom(Aa
i , B

b
j ).

Then Cℓ is a subcomplex of C. In fact, we have a decreasing filtration

C = C−m ← C−m+1 ← · · · ← Cn ← Cn+1 = 0.

Its associated graded is the complex whose k-th chain group is

grℓ(C•)
k =

⊕
b−a=k

⊕
i−j=ℓ

Hom(Aa
i , B

b
j ).



A SPHERE OF SPHERICAL OBJECTS 35

The differential in grℓ(C•) maps Hom(Aa
i , B

b
j ) to the direct sum

Hom(Aa−1
i , Bb

j )⊕Hom(Aa
i , B

b+1
j ).

Its first component is obtained by pre-composing with the differential Aa−1
i → Aa

i of Ai and its second

component is obtained by post-composing with the differential Bb
j → Bb+1

j of Bj . Thus, we have a direct
sum decomposition of complexes

grℓ(C•) =
⊕

i−j=ℓ

Hom(Ai, Bj).

The spectral sequence asserted in the statement is the spectral sequence associated to the filtered complex
C•; see [31, Tag 012K]. Its E1 page is given by

E1(p, q) = Hp+q(grp(C•)) =
⊕
k

Homp+q(Ak+p, Bk),

and it converges to Hp+q(C•) = Homp+q(X,Y ). □

Let us now state the analogue of Proposition A.1 in the triangulated setting under suitable assumptions.
Let C be a triangulated category. Let X and Y be objects of C with filtrations

0 = X0 → X1 → · · · → Xn = X

and
0 = Y0 → Y1 → · · · → Ym = Y.

Let Ai and Bj be the objects that complete the triangles Xi−1 → Xi → Ai
+1−−→ and Yj−1 → Yj → Bj

+1−−→.
In our applications, the categories we study all have dg enhancements (see, e.g. [21]). In these cases we have
the following analogue of Proposition A.1.

Proposition A.2. In the setup above, if C has a dg enhancement, then we have a spectral sequence with E1

page

E1(p, q) =
⊕
k

Homp+q(Ak+p, Bk)

that converges to Homp+q(X,Y ).

Proof. By definition, if C has a dg enhancement, then it is isomorphic as a triangulated category to the
homotopy category of a dg category D. The triangulated structure on the homotopy category of D consists
of triangles that are isomorphic to mapping cones (see, e.g. [21, Lemma 3.3]). Thus we can reduce to the
situation of iterated cones treated in Proposition A.1. □
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