
EQUIVARIANT COHOMOLOGY AND THE LOCALIZATION THEOREM

ASILATA BAPAT

DISCUSSED WITH VICTOR GINZBURG

1. Introduction

In this paper we describe equivariant cohomology, which is a cohomology theory applicable to spaces
equipped with a group action. The equivariant cohomology measures not only the topology of the space, but
also the complexity of the group action. For example if the group acts freely, the equivariant cohomology is
equal to the ordinary cohomology of the orbit space. In contrast, the equivariant cohomology of a one-point
space (on which any group acts trivially) is quite large.

Under certain conditions the equivariant cohomology ring may be described to a large extent by its
restriction to the fixed points of the group action. This is the content of the localization theorem. We
discuss versions by Atiyah-Bott ([AB84]) and Berline-Vergne ([BV85]) in the context of actions of compact
connected Lie groups on compact smooth manifolds. As a consequence of the localization theorem, the
integral of an equivariant cohomology class over a manifold can be expressed by an integral over just the
fixed set of the group action, which is typically easier to compute.

In Section 2 and Section 3, we formally describe the construction of equivariant cohomology, and some
complexes that are convenient for computing it. In Section 4 we describe how some properties of ordinary
cohomology generalize to equivariant cohomology. In Section 5, we reduce to the case that the group is a
compact torus, which is useful for computational purposes. Finally in Section 6, we precisely formulate the
localization theorems and deduce the integration formula.

The main references are [GS99], [AB84] and [BV85].

2. Topological construction of equivariant cohomology

Throughout this paper, let G denote a compact connected Lie group. For any real vector space V , we
denote its complexification V ⊗R C by VC. Set g = (LieG)C. Let M be a topological space equipped with a
G-action.

The main ingredient of the topological construction of equivariant cohomology is the homotopy quotient.
Fix a classifying space BG of G, and a corresponding universal bundle EG→ BG. Observe that the diagonal
action of G on the space EG×M is free.

Definition 2.1. The homotopy quotient of M by G is defined to be MG = EG ×GM . The G-equivariant
cohomology of M is defined to be the singular cohomology of MG, and is denoted by H∗G(M).

We always fix the ring of coefficients to be C. As stated, the definition of H∗G(M) depends on a choice of
EG and BG. However, it can be checked that the space MG is well-defined upto homotopy type, and hence
H∗G(M) is well-defined upto isomorphism.

Example 2.2. Let M = {p} be a single point with the trivial G-action. Then EG×G {p} ∼= EG/G ∼= BG.
Hence H∗G({p}) = H∗(BG).

Example 2.3. Let M be a space with a free G-action. In this case, the map EG×GM → M/G is a fibre
bundle with fibre E. Since E is contractible, we have H∗G(M) ∼= H∗(M/G).

Following the notation of [AB84], we denote H∗G({p}) by H∗G. For every M , there is a projection map
MG → BG, which realizesMG as a fibre bundle overBG with fibreM . Hence we obtain a mapH∗G → H∗G(M)
on cohomology. This makes H∗G(M) into an H∗G-algebra (in particular, an H∗G-module).
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3. Construction of equivariant de Rham cohomology

The de Rham complex is a convenient tool to compute the cohomology of smooth manifolds. We now
describe analogues of the de Rham complex for the equivariant case. In this section let M be a smooth
manifold equipped with a smooth G-action. Let Ω(M) be the usual de Rham complex of smooth differential
forms on M .

3.1. G∗-algebras. To describe equivariant de Rham cohomology, we need the algebraic structure of G∗

algebras, as defined in [GS99]. Before recalling the formal definition, we consider the motivating example
of Ω(M). This is a commutative differential graded algebra (DGA) on which G acts by automorphisms.
Explicitly, there is a smooth representation ρ : G→ Aut(Ω(M)) given by ρ(g)(ω) = (g−1)∗ω. By differenti-
ation, we obtain a representation Lξ : g → End(Ω(M)). Every ξ ∈ g determines a vector field vξ on M as
follows:

(1) vξ(x) =
d

dt
(exp−tξ)(x)

∣∣∣
t=0

.

Observe that Lξ is just the Lie derivative with respect to vξ, which is a derivation of degree 0 on Ω(M).
Let ιξ : Ω∗(M) → Ω∗−1(M) denote contraction by vξ, which is a derivation of degree −1 on Ω(M). The
operators Lξ, ιξ, d and ρ satisfy several relations. This structure is encoded in the definition of a G∗ algebra.

Definition 3.1. Let (A, d) be a commutative DGA over C with a smooth representation ρ : G → Aut(A).
Then A is called a G∗ algebra if for every ξ ∈ g, there are derivations ιξ ∈ Der−1(A) and Lξ ∈ Der0(A)
satisfying the following properties.

(1) [Lξ, Lη] = L[ξ,η].

(2) [ιξ, ιη] = 0.

(3) [Lξ, ιη] = ι[ξ,η].

(4) [d, ιξ] = Lξ.

(5) [d, Lξ] = 0.

(6) d
dtρ(exp tξ) |t=0= Lξ.

(7) ρg ◦ Lξ ◦ ρg−1 = LAd g(ξ).

(8) ρg ◦ ιξ ◦ ρg−1 = ιAd g(ξ).

(9) ρg ◦ d ◦ ρg−1 = d.

Definition 3.2. An element a in a G∗ algebra A is called horizontal if ιξa = 0 for every ξ ∈ g. A horizontal
element a ∈ A such that ρga = a for every g ∈ G is called basic.

Let Ahor and Abas denote the subsets of horizontal and basic elements of A respectively. Then both these
spaces are subalgebras that are preserved by d. It is easy to check that if (A1, d1) and (A2, d2) are two G∗

algebras, then A1⊗A2 is also a G∗ algebra, where the maps ιξ and Lξ are extended to A1⊗A2 as derivations
in the obvious way.

Definition 3.3. Let ξ1, . . . , ξn be a basis of g. A G∗ algebra A is said to be of type (C) if there are elements
{θi ∈ A1 | 1 ≤ i ≤ n} such that ιξiθ

j = δij for all i, j, and such that the subspace spanned by these elements
is G-invariant.

Fix E to be any acyclic G∗ algebra of type (C).

Definition 3.4. The G-equivariant cohomology of a G∗ algebra A is defined to be the cohomology of the
complex (A⊗ E)bas, and is denoted by H∗G(A).

The complex (A ⊗ E)bas can be compared with the homotopy quotient, where E may be thought of as
playing the role of EG. The algebra E being acyclic corresponds to EG being contractible, and E being of
type (C) corresponds to EG having a free G-action. As stated, the definition depends on the choice of E.
It is proved in [GS99] that the definition is independent of choices. Moreover, the following theorem states
the relationship of the G-equivariant cohomology of a manifold M (defined in the previous section) to the
G-equivariant cohomology of Ω(M).

Theorem 3.5 (Equivariant de Rham theorem). The G-equivariant cohomology of M is isomorphic to the
G-equivariant cohomology of Ω(M).
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3.2. The Weil algebra and the Cartan complex. We now introduce two specific complexes that compute
the equivariant cohomology of a smooth manifold. We state the results of this section without proof, but
the proofs may be found in [GS99].

Definition 3.6. The Weil algebra of G is defined as W =
∧

g∗⊗Sym g∗, where the elements of
∧1

g∗ each
have degree 1, and the elements of Sym1 g∗ each have degree 2. The differential dW on W is defined on
generators as dW(x⊗ 1) = 1⊗ x and dW(1⊗ x) = 0 for x ∈ g∗.

The Weil algebra is a particularly nice example of an acyclic G∗ algebra of type (C). Setting E = W in
the definition of equivariant cohomology of a G∗ algebra, we obtain H∗G(M) = H∗((Ω(M)⊗W)bas).

We now introduce the Cartan complex, which also computes the equivariant cohomology of M , and is
especially suitable for computations. This complex is also suitable for extending results from ordinary de
Rham cohomology to the equivariant setting, since exact sequences of ordinary differential forms give rise to
exact sequences of the corresponding Cartan complexes.

Let ξ1, . . . , ξn be a basis of g, and let ξ∗1 , . . . , ξ
∗
n be the corresponding dual basis of g∗.

Definition 3.7. The Cartan complex is defined as ΩG(M) = (Ω(M)⊗Sym g∗)G, where elements of Sym1 g∗

are assigned degree 2. The differential dG is defined as

dG(ω ⊗ f) =

n∑
i=1

ιξiω ⊗ (ξ∗i f).

Alternatively, we may think of elements of ΩG(M) as G-equivariant polynomial maps ω : g → Ω(M).
The differential dG now becomes (dGω)(ξ) = d(ω(ξ)) + ιξ(ω(ξ)). From this interpretation it is clear that the
definition of ΩG(M) is independent of the basis chosen.

4. Properties of equivariant cohomology

In this section we briefly recall some familiar properties of singular cohomology, and state similar properties
for equivariant cohomology.

4.1. Long exact sequences. Let Y be a topological space with a G-action, such that X is a G-invariant
subspace. Then the inclusion X ↪→ Y induces an inclusion XG ↪→ YG. Set H∗G(Y,X) = H∗(YG, XG). The
following two results are immediate from the topological definition of equivariant cohomology.

Proposition 4.1. The relative equivariant cohomology fits into the following long exact sequence:

· · · → Hn
G(Y,X)→ Hn

G(Y )→ Hn
G(X)→ Hn+1

G (Y,X)→ · · · .

Proposition 4.2 (Equivariant Mayer-Vietoris sequence). Suppose that Y = U ∪V for two open G-invariant
subspaces U and V . Then there is a long exact sequence of equivariant cohomology groups as follows:

· · · → Hn−1
G (U ∩ V )→ Hn

G(Y )→ Hn
G(U)⊕Hn

G(V )→ Hn
G(U ∩ V )→ · · · .

Now suppose that Y is a compact smooth manifold such that X is a closed submanifold. Using the Cartan
complex, set H∗G(Y,X) = H∗(ΩG(Y,X)). Further, let Hn

G(Y −X)c denote the cohomology of ΩG(Y −X)c,
which is the Cartan complex with compact support on X − Y .

Proposition 4.3. There is a long exact sequence

· · · → Hn
G(Y −X)c → Hn

G(Y )→ Hn
G(X)→ Hn+1

G (Y −X)c → · · · .

Proof sketch. Using some local computations in an equivariant tubular neighbourhood around X, it can be
shown that the extension map Ω(Y −X)c → Ω(Y,X) induces an isomorphism of H∗G-modules in cohomology.
The result now follows from Proposition 4.1. �
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4.2. The push-forward map. Let X and Y be compact and oriented smooth manifolds, of dimensions m
and n respectively. Let d = n−m. Suppose that there is a map f : X → Y . In this case we can define a push-
forward map f∗ : H∗(X) → H∗+d(Y ), as the composition H∗(X) ∼= Hm−∗(X) → Hm−∗(Y ) ∼= H∗+d(Y ).
The first and third maps come from Poincaré duality, while the second is the induced map in homology.

Now suppose that X and Y are each equipped with an orientation-preserving G-action. Let f : X → Y
be a G-equivariant map. Since Poincaré duality does not hold for MG, the previous definition does not
immediately extend to equivariant cohomology. Nonetheless, we can construct an equivariant push-forward
map. The idea is to first tackle two special cases, and then combine them to construct the general definition.

First let f : X → Y be a fibre bundle. In this case the push-forward in ordinary cohomology is just
integration over the fibre. Let ω =

∑
i ωi ⊗ qi be a form in the Cartan complex. The equivariant fibre

integral is defined as f∗ω =
∑
i(f∗ωi)⊗ qi, where f∗ωi is the fibre integral of ordinary cohomology. This is

well-defined as a map from H∗G(X) to H∗G(Y ).
Next suppose that f : X ↪→ Y is the inclusion of a closed submanifold. Let νX be the normal bundle of X

inside Y . By the tubular neighbourhood theorem, we may assume that νX is a subspace of Y . Recall the usual
Thom isomorphism H∗−d(X) ∼= H∗(νX)c. The push-forward in ordinary cohomology is the composition
H∗−d(X) → H∗(νX)c → H∗(Y )c = H∗(Y ), where the second map is induced from the inclusion νX → Y .
For equivariant cohomology, consider an equivariant tubular neighbourhood νX of X inside Y . There is an
equivariant Thom isomorphism H∗−dG (X) → H∗G(νX)c (see e.g. [GS99]). The equivariant push-forward is

defined as the composition H∗−dG (X)→ H∗G(νX)c → H∗G(Y )c = H∗G(Y ).
Finally we define the equivariant push-forward for any f : X → Y . We can write f as the composition

X
Γ→ X × Y

π→ Y , where Γ is the graph map and π is the second projection. Since Γ realizes X as a
submanifold of X × Y , the map Γ∗ : H∗G(X) → H∗+nG (X × Y ) is defined. Since π : X × Y → Y is a fibre

bundle, the map π∗ : H∗G(X × Y ) → H∗−mG (Y ) is also defined. Now set f∗ : H∗G(X) → H∗+dG (Y ) to be the
composition π∗ ◦ Γ∗.

With these definitions, the equivariant push-forward is well-defined and satisfies properties analogous to
the usual push-forward. We mention a few in particular, which will be important later. First, if there
are maps f : X → Y and g : Y → Z, then (fg)∗ = f∗g∗. Also, if ω ∈ H∗G(X) and η ∈ H∗G(Y ), then
f∗(ω · f∗η) = (f∗ω) · η. If E → X is a G-equivariant bundle, then we can define its equivariant Euler class
(denoted EuG(E)). Then if f : X ↪→ Y is the inclusion of a submanifold and νX is the equivariant normal
bundle to X, then f∗f∗ω = EuG(νX)ω. More details may be found in [GS99].

5. Reduction to a maximal torus

The definitions of equivariant cohomology discussed so far are valid for any compact connected Lie group.
However it is more convenient for computational purposes to consider compact connected abelian Lie groups,
which are compact tori (products of S1). Since G contains a maximal torus T , we can restrict the G-action
on M to a T -action on M . In this section, we show that we can in fact compute H∗G(M) in terms of H∗T (M)
and the action of the Weyl group.

Let r be the rank of G. Fix a maximal torus T inside G. Set t = (LieT )C. We first prove the following
proposition.

Proposition 5.1. There is a natural isomorphism H∗T
∼= Sym t∗.

Proof. Recall that the classifying space of T is an r-fold product of the infinite complex projective space
CP∞. The cohomology of this space is a polynomial algebra on n generators, each of degree 2.

Consider the fibre bundle T → ET → BT . We compute the E2 page of the Serre spectral sequence
for this fibre bundle. Since BT is simply connected, we obtain Ep,q2 = Hp(BT ) ⊗ Hq(T ), with maps

dp,q2 : Ep,q2 → Ep+2,q−1
2 . Since ET is contractible, it has no cohomology except in degree 0. Hence we obtain

a natural isomorphism E0,1
2

∼=−→ E2,0
2 . We can rewrite this isomorphism more explicitly as follows:

H1(T ) ∼= H0(BT )⊗H1(T )
d0,12−→ H2(BT )⊗H0(T ) ∼= H2(BT ).

It is known that H∗(T ) = (
∧
t∗)T =

∧
t∗. Hence H1(T ) ∼= t∗. Therefore we can naturally identify H2(BT )

with t∗. Since H∗(BT ) = Sym(H2(BT )), it follows that H∗(BT ) ∼= Sym t∗. �
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Now we can prove that for a general compact connected Lie group G with maximal torus T , we can essen-
tially reduce the computations of G-equivariant cohomology to computations of T -equivariant cohomology.
Let N be the normalizer of T in G. Let W = N/T be the Weyl group.

Theorem 5.2. There is a natural isomorphism H∗G(M) ∼= H∗T (M)W .

Proof. As before, let MG and MT denote the homotopy quotients of M by G and T respectively. The action
of N on EG ×M (by restriction of the G-action) descends to MT . Moreover, the subgroup T ⊂ N acts
trivially on MT . Hence we obtain a right action of W on MT , which induces a left action of W on H∗T (M).
There is a quotient map f : MT →MG which induces a map f∗ : H∗G(M)→ H∗T (M). To prove the theorem,
it suffices to show that f∗ is injective, and that the image of f∗ is H∗T (M)W .

We can factor f as the composition MT →MN →MG. The first map MT →MN is a fibre bundle with
fibre W . Since W is finite, the induced map on cohomology gives an isomorphism H∗(MN ) ∼= H∗(MT )W .

The second map MN → MG is a fibre bundle with fibre G/N . First we show that G/N has trivial
cohomology. Using the fibering G/T → G/N with fibre W , see that H∗(G/N) ∼= H∗(G/T )W . It is known
(see e.g. [GHV76]) that as a W -module, H∗(G/T ) is isomorphic to the regular representation. Hence
H∗(G/N) ∼= H∗(G/T )W ∼= C. Finally, using the Serre spectral sequence for the fibre bundle MN → MG,
we deduce that H∗(MG) ∼= H∗(MN ).

Combining the two pieces, we see that H∗(MG) ∼= H∗(MN ) ∼= H∗(MT )W , which proves the theorem. �

6. Localization theorems

In this section, we assume that M is a compact and oriented smooth manifold, such that the G-action
is smooth and orientation-preserving. As outlined in Section 5, we may express H∗G(M) as the Weyl group
invariants of H∗T (M). Therefore in this section, we work with a compact torus T . Let MT denote the T -fixed
subset of M .

The main localization theorem states that almost all of the equivariant cohomology of M is governed by
the equivariant cohomology of MT . To make this notion precise, we use the H∗T -module structure on the
cohomology ring H∗T (M). Recall from Proposition 5.1 that H∗T

∼= Sym t∗ ∼= C[t]. Hence the support of any
H∗T -module A (denoted SuppA) may be identified as a subset of t.

Theorem 6.1 (Atiyah-Bott localization). The kernel and cokernel of the map i∗ : H∗T (M)→ H∗T (MT ) are
torsion modules over H∗T .

The localization theorem allows us to express the integral of an equivariant form over M in terms of the
integrals of the form over the connected components of MT . Let MT =

∐
F be the decomposition of MT

into its connected components. Precisely, the integration formula states the following.

Theorem 6.2. The integral
∫
M
ω of some ω ∈ H∗T (M) can be computed as follows:∫

M

ω =
∑
F

∫
F

(
i∗Fω

EuT (νF )

)
.

In the remainder of this section, we first sketch the proofs of these theorems. Then we discuss the
Berline-Vergne localization theorem and the Berline-Vergne integration formula.

Lemma 6.3. Let K be a closed subgroup of T . Suppose that for some manifold X, there is a T -equivariant
map X → T/K. Then SuppH∗T (X) is contained in (LieK)C.

Proof. The support of H∗K as an H∗T -module is equal to (LieK)C. Consider the map π : X → {p} that
collapses all points of X to p. The induced map π∗ : H∗T → H∗T (X) makes H∗T (X) into an H∗T -algebra. To
show that the support of H∗T (X) is contained in (LieK)C, it is enough to show that the map π∗ factors
through H∗K as a map of H∗T -algebras.

The map π : X → {p} may be factored as the composition X → T/K → {p}. In cohomology, we obtain
H∗T → H∗T (T/K) → H∗T (X). It is easy to check that H∗T (T/K) ∼= H∗K as H∗T -algebras. Hence we obtain a
factoring H∗T → H∗K → H∗T (X). �

Let MT denote the subset of M consisting of points fixed by T . For any point p ∈ M , let Tp denote the
isotropy group of p inside T . By compactness of M and the equivariant tubular neighbourhood theorem,
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we can show that the set {Tp | p ∈ M} is finite. We now prove the following proposition, which shows that
away from MT , the T -equivariant cohomology is a torsion module over H∗T .

Proposition 6.4. The supports of the H∗T -modules H∗T (M −MT ) and H∗T (M −MT )c lie in the finite union⋃
p(LieTp)C, where p ∈M −MT . In particular, both are torsion modules over H∗T .

Proof sketch. Let p ∈ M −MT . Then Tp is a proper closed subgroup of T . Since T is compact, we can
identify T/Tp with the T -orbit of p, which makes T/Tp a smooth submanifold of M . Let Up be a T -invariant
tubular neighbourhood of T/Tp in M . Then there is a T -equivariant projection map Up → T/Tp. Using
Lemma 6.3, we see that H∗T (Up) is supported in (LieTp)C.

Now let U be a T -invariant tubular neighbourhood of MT . Since M − U is compact, there is a finite
open cover U = {Up} of M − U , where Up is as above. Recall that for a short exact sequence of modules
0 → A → B → C → 0 over some ring R, we have Supp(B) ⊂ Supp(A) ∪ Supp(C). Using this fact and the
equivariant Mayer-Vietoris sequence finitely many times for the open cover U , we see that

Supp(H∗T (M − U)) ⊂
⋃
Up∈U

Supp(H∗T (Up)) ⊂
⋃

p∈M−MT

(LieTp)C.

Since there is a T -equivariant deformation retract of U onto MT , it is clear that H∗T (M−U) ∼= H∗T (M−MT )
as H∗T -modules. Hence the proposition is proved for H∗T (M −MT ).

Using the Cartan complex, it is easy to see that H∗T (M −MT )c is a module over H∗T (M −MT ). Also, the
action of elements of H∗T on H∗T (M−MT )c factors through the ring map H∗T → H∗T (M−MT ). Therefore the
support of H∗T (M −MT )c as an H∗T -module is contained in the support of H∗T (M −MT ) as an H∗T -module.
Hence the proposition is proved for H∗T (M −MT )c as well. �

Now we can finish the proof of the Atiyah-Bott localization theorem.

Proof. Recall from Proposition 4.3 that there is a long exact sequence of cohomology groups as follows:

· · · → Hn
G(M −MT )c → Hn

G(M)
i∗−→ Hn

G(MT )→ Hn+1(M −MT )c → · · · .

The result is now clear from Proposition 6.4. �

By the localization theorem, the restriction i∗ is invertible modulo torsion. The following proposition
allows us to produce an explicit inverse.

Proposition 6.5. The kernel and cokernel of the push-forward map i∗ : H∗T (MT ) → H∗T (M) are torsion
modules over H∗T .

Proof. Since i∗ factors through the equivariant Thom isomorphism, the kernel and cokernel of i∗ correspond
to the kernel and cokernel of the map H∗T (νMT )c → H∗T (M)c, which are precisely H∗−1

T (M − νMT )c and
H∗T (M − νMT )c. These are torsion modules by Proposition 6.4. �

Recall that the composition i∗i∗ is multiplication by EuT (νMT ), which is the equivariant Euler class of
the normal bundle of MT . Since both i∗ and i∗ are isomorphisms modulo torsion, so is their composition.
In particular, EuT (νMT ) is invertible over some dense open set of t, and the maps i∗ and Eu−1

T (νMT )i∗ are
mutually inverse over this set. Rewriting in terms of the connected components of MT , we see that the
inverse of i∗ =

∑
F i

F
∗ is

∑
F Eu−1

T (νF )i∗F . Now we can finish the proof of the integration formula.

Proof of the integration formula. We first work over an open dense subset of t where Eu−1
T (νF ) is defined for

every F . Let ω ∈ H∗T (M). Let π : M → {p} be the map that collapses all points of M to p. Then we can
compute

∫
M
ω as follows:∫

M

ω = π∗ω =
∑
F

π∗i
F
∗

(
i∗Fω

EuT (νF )

)
=
∑
F

∫
F

(
i∗Fω

EuT (νF )

)
.

However, the left hand side of the equality is an element of H∗T (hence a polynomial function on t), while
the right hand side is a sum of rational functions. Since this identity holds on an open dense subset of t, it
holds as a formal identity of rational functions. �
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We now discuss the Berline-Vergne localization theorem. This theorem is stated in terms of a modified
version of the Cartan complex, and the proof is by an explicit computation using differential forms. Fix
some ξ ∈ t. Consider the complex Ωξ(M) = {ω ∈ Ω(M) | Lξω = 0}. The differential dξ on Ωξ(M) is defined
as dξω = dω+ iξω, where d is the de Rham differential on Ω(M). Let vξ be the vector field on M generated
by ξ, as defined in (1). Let Mξ denote the submanifold of M consisting of the zeroes of vξ. It is clear that
dξ = d on Mξ, which means that H∗(Ωξ(M

ξ)) = H∗(Ω(Mξ)) = H∗(Mξ). Let i : Mξ ↪→M be the inclusion.
In this situation, we have the following version of the localization theorem.

Theorem 6.6 (Berline-Vergne localization). The map i∗ : H∗(Ωξ(M))→ H∗(Mξ) is an isomorphism.

Remark 6.7. Let ξ be sufficiently generic, so that Mξ = MT . Now observe that the complex Ωξ(M) is
the evaluation of the Cartan complex at ξ ∈ t. Therefore in this case, the map i∗ : H∗(Ωξ(M)) → H∗(Mξ)
corresponds to restricting the H∗T -module map H∗T (M) → H∗T (MT ) to the corresponding fibres over the
point ξ. Hence Theorem 6.6 may be thought of as a fibre-wise version of Theorem 6.1.

To prove Theorem 6.6, we first need the following lemma, which closely resembles Proposition 6.4.

Lemma 6.8. If N is a T -invariant submanifold of M that does not intersect Mξ, then H∗(Ωξ(N)) = 0.

Proof. Fix a T -invariant Riemannian metric g on M . Construct a 1-form α on N , defined on a vector field
Y as follows:

α(Y ) =
g(vξ, Y )

g(vξ, vξ)
.

It can be checked that ιξα = 1 and Lξα = 0. A computation shows that dξ(1 + dα) = 0. Finally, 1 + dα
is invertible in Ωξ(N), since dα is nilpotent. Now if ω is a dξ-cocycle in Ωξ(N), we can present ω as a
dξ-coboundary as follows: ω = dξ(α(1 + dα)−1ω). �

Proof of Theorem 6.6. The first step of the proof is to show that for any T -invariant open neighbourhood
U of Mξ, the map H∗(Ωξ(M)) → H∗(Ωξ(U)) is an isomorphism. The second step is to show that for any
T -equivariant tubular neighbourhood U of Mξ, the map H∗(Ωξ(U))→ H∗(Mξ) is an isomorphism.

For the first step, we show that H∗(Ωξ(M)) → H∗(Ωξ(U)) is both surjective and injective. Let ρ be a
function on M that is compactly supported on U , and which is identically equal to 1 on a neighbourhood of
Mξ. Construct a 1-form α ∈ Ωξ(M −Mξ) as in the proof of the previous lemma.

To show surjectivity, let ω be a dξ-cocycle in Ωξ(U). Consider the form ω′ = ω − dξ((1− ρ)α(1 + dα)ω),
which represents the same class in cohomology. The form ω′ is compactly supported in U . Hence the class
of ω′ in H∗(Ωξ(M)) restricts to the class of ω in H∗(Ωξ(U)). To show injectivity, let ω be a dξ-cocycle
in Ωξ(M) such that ω = dξη on U . Then ω′ = ω − dξ(ρη) represents the same cohomology class, but is
supported in M − U . By Lemma 6.8, ω′ must be zero in cohomology.

For the second step, suppose that U is a T -equivariant tubular neighbourhood of Mξ. Then there are
T -equivariant maps i : Mξ → U (inclusion) and π : U → Mξ (projection). The composition π ◦ i is the
identity map, while the composition i ◦ π is homotopic to the identity map by a T -equivariant homotopy.
It is possible to construct a chain homotopy h : Ωn(U) → Ωn+1(U) in the usual way, with the additional
property that ιξh = −hιξ.

It is clear that i∗ : H∗(Ωξ(U))→ H∗(Mξ) is surjective, since i∗π∗ is the identity map. To show injectivity,
let ω ∈ Ωξ(U) be a dξ-cochain such that i∗ω = 0. Then a computation shows that dξ(hω) = ω, which means
that ω is a coboundary. �

As before, this version of the localization theorem can also be used to deduce an integration formula. In
this case, the proof involves an explicit computation using differential forms and Stokes’ theorem. We only
discuss the case in which the vector field vξ has isolated zeroes. The general case is more complicated, but
is proved in a similar way.

Theorem 6.9. Let ξ ∈ t such that vξ has isolated zeroes {pi} on M . Then for any cohomology class
ω ∈ H∗(Ωξ(M)), we can compute its integral over M as follows:∫

M

ω =
∑
i

ω(pi)

EuT (νpi)
.
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Proof sketch. Let ω be a dξ-cocycle in Ωξ(M). As in the proof of Theorem 6.6, construct a form α on
M −Mξ with the property that ιξα = 1 and Lξα = 0. On M −Mξ, we can write ω = dξ(α(1 + dα)−1ω).

Consider a small open ball U εi of radius ε around each fixed point pi. Let V ε =
⋃
i U

ε
i . By Stokes’ theorem,

we have ∫
M

ω = lim
ε→0

∫
M−V ε

ω = − lim
ε→0

∫
∂V ε

α(1 + dα)−1ω = − lim
ε→0

∑
i

∫
∂Uεi

α(1 + dα)−1ω.

Consider the map ϕ : ∂V ε → Mξ such that ϕ(∂U εi ) = pi. It is possible to construct forms βi in local
coordinates on U2ε

i − {pi} with the property that ϕ∗(βi(1 + dβi)
−1) = −Eu−1

T (νpi), and such that ιξβi = 1
and Lξβi = 0. In this case for every i, we have∫

∂Uεi

α(1 + dα)−1ω =

∫
∂Uεi

βi(1 + dβi)
−1ω.

Recall from Lemma 6.8 that ω is cohomologous to ϕ∗(ω(pi)) on U εi . Using this fact, we see that∫
M

ω = − lim
ε→0

∑
i

∫
∂Uεi

βi(1 + dβi)
−1ϕ∗(ω(pi)) = lim

ε→0

∑
i

ω(pi)

EuT (νpi)
=
∑
i

ω(pi)

EuT (νpi)
.

�
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(1983), no. 2, 539–549.
[BV85] , The equivariant index and Kirillov’s character formula, Amer. J. Math. 107 (1985), no. 5, 1159–1190.

[GHV76] W. Greub, S. Halperin, and R. Vanstone, Connections, curvature, and cohomology, Academic Press [Harcourt Brace

Jovanovich Publishers], New York, 1976, Volume III: Cohomology of principal bundles and homogeneous spaces, Pure
and Applied Mathematics, Vol. 47-III.

[GS99] V. W. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory, Springer-Verlag, Berlin, 1999.

[MQ86] V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986),
no. 1, 85–110.

8


	1. Introduction
	2. Topological construction of equivariant cohomology
	3. Construction of equivariant de Rham cohomology
	3.1. G*-algebras
	3.2. The Weil algebra and the Cartan complex

	4. Properties of equivariant cohomology
	4.1. Long exact sequences
	4.2. The push-forward map

	5. Reduction to a maximal torus
	6. Localization theorems
	References

