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1 Triangulations of points in a convex arrangement

Consider a configuration of n distinct points in R2, in a convex arrangement. By a diagonal
or edge we mean a straight line segment joining two of the points. An edge can be either
external (i.e., on the boundary of the convex hull), or internal.

Definition 1.1. A triangulation of a given convex configuration of n points in the plane is
a maximal set of diagonals that are pairwise non-crossing. That is, no two diagonals in the
set intersect in their interiors.

1.1 Combinatorics of triangulations

Given a convex arrangement of n points, the number of triangulations has a well-known
formula.

Exercise 1.2. Find the number of possible triangulations of a convex arrangement of n
points in the plane.

Note that the definition of a triangulation makes no reference to triangles!

Exercise 1.3. Show that a triangulation divides the convex hull of the configuration into
triangular regions.

Using the previous exercise, we see that each internal edge in a triangulation has one
triangular region on either side. That is, each internal edge forms the diagonal of a convex
quadrilateral.

Definition 1.4. Let T be a triangulation of a fixed convex configuration of n points. Let a
be an internal edge. The edge-flip of a in T is the unique edge a′ that is the other diagonal
of the convex quadrilateral formed by the two triangles bordering a.
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Note that the edge flip a′ of a in T crosses a. It is not too hard to see that the set
(T \ {a})∪ {a′} is also a triangulation.

Exercise 1.5. Let T be a triangulation, and let a be an internal edge. Prove that there is a
unique edge a′ such that (T \ {a})∪ {a′} is a triangulation, and that a′ is precisely the edge
flip of a in T .

We can also make the following observation.

Proposition 1.6. Any triangulation of a convex n-gon has 2n− 3 edges and n− 2 triangles.

Proof. Consider any triangulation of a convex n-gon. Suppose that it has e edges and f
triangular faces. Recall by Euler’s formula for a planar graph, that we have

n− e+ f = 1.

Moreover, each face has three edges, and each edge except for the external edges (of which
there are n) borders two faces. We see that

3 f = 2e− n.

It follows from the two equations that e = 2n− 3, and f = n− 2.

We see that every triangulation has (2n−3)−n= n−3 internal edges, and they can each
be flipped. So we can draw a graph whose vertices are the triangulations of a fixed n-gon,
and where there is an edge between two triangulations if one is obtained from the other via
an edge flip. It is clear that this graph is (n− 3)-regular.

AMSI WINTER SCHOOL 2022 2



Exercise 1.7. Show that the flip graph of a convex n-gon (as described above) is connected.
That is, one can reach a fixed triangulation from any triangulation via a sequence of flips.

The flip graph has a number of beautiful applications. For example, see this paper of
Sleator, Tarjan, and Thurston [20]. More about triangulations in the direction of combina-
torial geometry can be found in [8].

Moreover, the flip graph can be realised as the 1-skeleton of a polytope called the asso-
ciahedron, or more specifically, the associahedron of type A. It is named as such because it
can also be defined by vertices corresponding to the various ways to parenthesise a product
of n terms, with edges coming from the associativity relation.

Exercise 1.8. Show that the triangulations of a convex n-gon are in bijection with the ways
to parenthesise a product of (n− 1) terms, and that an edge flip corresponds to a change of
parethesisation coming from an associativity relation.

There is a wealth of work on this topic, which has been generalised in several directions.
For an introduction see, e.g. [9]. We explore one aspect of this in the next topic.

1.2 Connection to the type-A cluster algebra and the coordinate ring of
a Grassmannian

1.2.1 The mutation rule

Fix a convex n-gon and a triangulation T . For each i j ∈ T , let x i j be an indeterminate. To
the vertex corresponding to the triangulation T in the flip graph, associate the set CT = {x i j |
i j ∈ T}. This is called the cluster corresponding to T .

Suppose that ik ∈ T , and consider the edge flip of ik in T to form T ′. This corresponds
to replacing ik by jl in a quadrilateral i jkl consisting of the two triangles bordering ik. Set
CT ′ to be (CT \ {x ik})∪ {x jl}, where

x jl =
x i j xkl + x jk x il

x i j
.

This comes from the Ptolemy relation (of cyclic quadrilaterals):

x ik x jl = x i j xkl + x jk x il .

The operation of replacing CT by CT ′ is called mutation. Let F be the field of rational
functions in {x i j | i j ∈ T}. LetA be the subring of F generated by the union of all possible
successive mutations of CT . This is the cluster algebra associated to the chosen convex n-gon
(and the starting triangulation T). It is a special case of a much more general construction:
see, e.g. [14,22].

The construction does not make it clear whether the cluster corresponding to a particular
triangulation T ′ depends on the sequence of flips. In fact, it does not.

Theorem 1.9. Consider the flip graph of a convex n-gon, and fix a triangulation T and an
initial cluster CT . Then if T ′ is any other triangulation, the cluster associated to T ′ via a
sequence of mutations from T is independent of the path chosen.

The theorem above shows that this cluster algebra has finitely many clusters: i.e., it is of
finite type. It is a special case of the classification of cluster algebras of finite type. These are
classified by (yet again) the Dynkin diagrams of type A, D, and E — the original reference
is [10].

Exercise 1.10. Verify for triangulations of a convex pentagon that you get finitely many
clusters by repeated mutation.
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1.2.2 The coordinate ring of Gr(2, n)

The cluster algebra of type A has a “concrete” realisation via the coordinate ring of a Grass-
mannian. Fix a field k. Recall that the Grassmannian Grk(m, n) is a space that parameterises
m-dimensional vector subspaces of a fixed n-dimensional vector space.

A point in Gr(m, n) is specified by a set of m linearly independent vectors v1, . . . , vm ∈ kn.
Thus this point is specified by an n×m matrix:

H =





↑ ↑ · · · ↑
v1 v2 · · · vm
↓ ↓ · · · ↓



 .

Conversely, any n×m matrix H of rank m specifies a point [H] in Gr(m, n). Note that several
such matrices may specify the same point, because the chosen m-dimensional subspace has
many bases.

Exercise 1.11. Let H and H ′ be two n×m matrices of rank m. Show that [H] = [H ′] if and
only if there is an invertible m×m matrix A such that HA= H ′.

Exercise 1.12. Check that the action of GLm(k) on the space of n×m matrices of rank m
by right multiplication is free.

We see that Gr(m, n) is the quotient of the space of n×m matrices of rank m by the action
of GLm(k).

Recall that an n×m matrix H has rank m if and only if some m×m minor has non-zero
determinant. Further, if A ∈ GLm(k), then the determinants of the m×m minors of HA are
just the corresponding determinants from H, scaled by det A.

Exercise 1.13. Check that right multiplication by an element of GLm(k) scales the determi-
nants of the m×m minors of an n×m matrix by det A.

This motivates the Plücker map Gr(m, n)→ P(
n
m)−1, described as follows. The homoge-

neous coordinates of the projective space on the right hand side are indexed by a choice of
m indices out of n, which we can think of as (1 ≤ i1 < i2 < · · · < im ≤ n). Given H such
that [H] ∈ Gr(m, n), let Hi1<···<im be the m×m minor of H corresponding to rows numbered
i1, . . . , im. Then the Plücker map is defined as

[H] 7→ [det(Hi1<···<im)]1≤i1<···<im≤n.

Exercise 1.14. Check that the Plücker map is well-defined and injective.

In fact, it is an embedding of algebraic varieties.
We now focus on Gr(2, n). Then a point [H] ∈ Gr(2, n) is specified by an n×2 matrix of

rank 2, and the Plücker embedding looks like

[H] 7→
�

det(Hi< j)1≤i< j≤n

�

.

For i < j, set pi j to be the (i j)th homogeneous coordinate of P(
n
2)−1. For convenience, if

j < i, set pi j = p ji .

Exercise 1.15. Check that every point in the image of the Plücker embedding satisfies the
Ptolemy relations: if 1≤ a < b < c < d ≤ n, then

pac pbd = pab pcd + pad pbc .
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Exercise 1.16. (*) Check that a point of P(
n
2)−1 lies in the image of the Plücker embedding

if and only if it satisfies all possible Ptolemy relations.

In fact, it follows from the exercises above that the homogeneous coordinate ring of
Gr(2, n) (thought of as a projective algebraic variety) is the quotient of k[(pi j)1≤i< j≤n] by
the Ptolemy relations.

Note that if we think of the numbers from 1 to n as arranged in a convex n-gon, then the
Ptolemy relation relates the Plücker coordinates of the two diagonals of a sub-quadrilateral
abcd to the Plücker coordinates of the sides.

Therefore the coordinate ring of Gr(2, n) has the structure of the cluster algebra described
in the previous section, where the clusters are in bijection with the triangulations, and for a
given triangulation T , consist of {pi j | i j ∈ T}.

2 Non-convex arrangements: triangulations and pseudo-
triangulations

2.1 Triangulations of not-necessarily-convex configurations

Consider a possibly non-convex (but generic) arrangement of n distinct points in the plane.
A triangulation is once again a maximal collection of non-crossing edges. As before, a trian-
gulation divides the convex hull of the configuration into triangular regions.

Once again, we can count the number of edges in a triangulation.

Proposition 2.1. Consider a fixed configuration of n distinct points in the plane, such that m
of the points lie in the interior of the convex hull of the configuration. Then the number of edges
in any triangulation of the configuration is 2n− 3+m, and the number of triangular regions
is n− 2+m.

Proof. Suppose we have e edges and f triangular faces. We apply Euler’s formula once
again:

n− e+ f = 1.

Once again, each triangular face bounds three edges. Every edge except for the external
edges bounds two faces. There are exactly n−m external edges, and so we have

3 f = 2e− (n−m).

Solving this system completes the proof.

However, we can immediately see that not every internal edge in a triangulation has an
edge flip. This is because the quadrilateral formed by the triangles on either side need not
be convex. We can, however, form the flip graph as before.
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Exercise 2.2. Find an example that shows that the flip graph of triangulations is not neces-
sarily regular.

Exercise 2.3. (*) Prove that the flip graph of triangulations of any generic arrangement of
n points in the plane is connected.

For more details about this exercise see, e.g. [13].
We could attempt to impose regularity on the flip graph by including curved arcs. To do

this, we could define a triangulation to using (isotopy classes of) curved arcs that begin and
end at two of the points and whose interior does not intersect any point in the configuration.
Then a triangulation would be a maximal collection of such arcs that divides the convex hull
into regions whose interiors are topologically interiors of triangles.

Exercise 2.4. Make the above construction precise, and define flips. Is the flip graph regu-
lar? Are there finitely many triangulations?

2.2 Pseudotriangulations

We choose to extend the story of triangulations to non-convex arrangements using a slightly
different gadget.

Definition 2.5. A pseudotriangle is a non-crossing m-gon in the plane with the following
properties:

1. its convex hull is a triangle, and

2. each vertex other than the three on the convex hull has an interior reflex angle.

We will instead consider subdivisions of non-convex arrangements into pseudotriangles.

Definition 2.6. A pseudotriangulation of a non-convex generic arrangement of n points is
a collection of edges that divides the convex hull into pseudotriangles.

Note that a triangle is always a pseudotriangle, and so a triangulation is always a pseu-
dotriangulation. So what did we achieve? Let us see. More details can be found in [19].
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2.2.1 Edge and face counts

Consider a pseudotriangulation on n points that has e edges and f interior faces. As before,
we have

n− e+ f = 1.

This time, a face no longer necessarily has three edges. However, it does have three (convex)
angles. The total number of convex angles is then 3 f . Let r be the number of reflex angles,
including the ones on the outside of the convex hull. The number of angles (both convex
and reflex) at a vertex is exactly the number of edges emanating from that vertex. The total
number of all the angles is therefore twice the number of edges (each edge is counted once
at each endpoint). We have

3 f + r = 2e.

Since we also have 3 f = 3+ 3e− 3n, we see that

3+ 3e− 3n+ r = 2e,

which gives
e = 3n− r − 3

f = 3n− r − 2.
Note that having r = n gives the same edge count as in the convex case, namely 2n− 3!

We now impose this condition. Every external vertex always has a reflex angle (the one on
the outside). So now stipulate that every internal vertex should also have a reflex angle.

Definition 2.7. We say that a vertex is pointed in a given pseudotriangulation if it has a
reflex angle. A pointed pseudotriangulation (or ppt) is a pseudotriangulation in which every
vertex is pointed.

The calculations above show that every ppt has exactly 2n− 3 edges and n− 2 pseudo-
triangular faces. As a corollary, we see that ppts are exactly the pseudotriangulations with
the minimal number of edges.

Exercise 2.8. (*) Consider a configuration of n points in the plane in general position. Show
that a maximal collection of edges that are non-crossing and such that every vertex is pointed
is necessarily a ppt.

2.2.2 Flips

Note that a pseudotriangle may more generally be defined as a non-crossing polygon with
exactly three internal convex angles. This accounts for degenerate cases. Similarly, say that
a pseudo-k-gon is a non-crossing polygon with exactly k internal convex angles.

Definition 2.9. Let P be a pseudo-k-gon. A diagonal d that lies in the interior of P is called
a bitangent if the graph P ∪ {d} is pointed.

Exercise 2.10. Prove that pseudotriangles have no bitangents.

Exercise 2.11. (*) Prove that a pseudoquadrilateral has exactly two bitangents.

Exercise 2.12. Show that if e is any internal edge of a ppt, then removing this edge creates
a pseudoquadrilateral. Check that e is a bitangent of this pseudoquadrilateral, and that
inserting the other bitangent e′ also produces a ppt. Conclude that every internal edge of a
ppt has a unique flip.
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2.2.3 PPTs on non-generic configurations

Consider a possibly non-generic configuration. The most extreme case of this is when all n
points lie on a single line.

We can extend the definition of pseudotriangulations to this case. We now consider
isotopy classes of arcs that start and end at two points in the configuration, and which does
not contain any point of the configuration in its interior. We say that an arc is “allowed” if it
has representatives in its isotopy class that are arbitrarily close to the straight line segment
between its endpoints. We will focus on allowed isotopy classes, that is, isotopy classes of
allowed arcs.

The unsigned angle between two allowed isotopy classes [a1] and [a2] (at a common
endpoint) is the limit of the unsigned angles between tangents to differentiable representa-
tives a1 and a2 at that endpoint, as a1 and a2 approach straight-line segments. In particular,
we can now have angles with values 0 and 2π.

We say that a collection of allowed isotopy classes is non-crossing if each class has a
representative such that no two of these representatives intersect.

Exercise 2.13. Convince yourself that you can make the above construction precise.

Exercise 2.14. Classify all pseudotriangles such that all vertices lie on a straight line.

Now a pointed pseudotriangulation is exactly the same as before.

Definition 2.15. A pointed pseudotriangulation on a possibly degenerate configuration of
n points is a maximal non-crossing collection of allowed isotopy classes.

2.3 Assorted exercises

Exercise 2.16. (Open question.) Find a closed formula for the number of ppts for a config-
uration of n arranged in a line.

Exercise 2.17. Check that every internal edge of a ppt in a possibly degenerate configuration
is flippable.

Exercise 2.18. (Open-ended.) Find families of configurations of points with a large number
of ppts.
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Exercise 2.19. (**) Show that among all possible configurations of n distinct points, a
convex configuration has the minimum number of ppts.

The proof of this exercise is the subject of the paper [1].

Exercise 2.20. (Open question?) Show that among all possible configurations of n distinct
points, a totally degenerate configuration has the maximum number of ppts.

3 Rigidity and infinitesimal rigidity

A framework is specified by a set of points {p1, . . . , pn} ∈ R2, together with a collection of
undirected edges of the form i j = {i, j} ∈ E. The edge i j is thought to be a straight and rigid
rod connecting pi and p j .

Let ℓi j be the (Euclidean) length of the edge pi p j . The configuration space of the frame-
work is the real solution set of the system of equations

(x i − x j)
2 + (yi − y j)

2 = ℓ2i j , i j ∈ E.

A (differentiable) rigid motion of the framework is a (differentiable) function

P : (−ε,ε)→ (R2)n

for some ε > 0, satisfying
(pi(t)− p j(t))

2 = ℓ2i j , i j ∈ E.

Note that rotations and translations (i.e., isometries of the plane) are always rigid motions.
A framework is rigid if it is has no rigid motions other than isometries of the plane.

An infinitesimal rigid motion of the configuration is a set of “velocity vectors” {v1, . . . , vn}
satisfying

〈pi − p j , vi − v j〉= 0, i j ∈ E.

Note that any differentiable rigid motion gives rise to an infinitesimal rigid motion, by taking
the derivative at the point 0.

Let G be a framework with vertex set P of size n, and edge set E of size e. We have an
“infinitesimal rigidity map”

MG : (R2)n→ Re

defined as follows. A point in the source space is a tuple of the form (v1, . . . , vn), where each
vi is in R2. It is sent to the element (〈pi − p j , vi − v j〉)i j∈E .

Note that the kernel of this matrix represents the infinitesimal rigid motions, and is at
least three-dimensional (as it includes the isometries).

Definition 3.1. Consider a framework with vertex set P and edge set E. A self-stress of a
framework is a function ω: E→ R satisfying the following. For each i ∈ P, we have

∑

i j∈E

ωi j(pi − p j) = 0.

Clearly, the set of all self-stresses forms a vector space.

Exercise 3.2. Prove that a functionω: E→ R (thought of as an element of Re) is a self-stress
of G if and only if it is orthogonal to the image of MG .
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Now suppose that G is a framework with infinitesimal rigidity matrix MG . Recall that
ker(MG) consists of the infinitesimal rigid motions. Let dim(ker(MG)) = d+3, so that G has
d non-trivial infinitesimal motions. Let s be the dimension of the space of self-stresses of G.

Observe that

e = rk(MG) + dim(im(MG)
⊥) = (2n− d − 3) + s = (2n− 3) + (s− d). (1)

In particular, ppts can be thought of as frameworks, and the number of edges in a ppt is
2n−3. We conclude that the number of non-trivial infinitesimal motions of a ppt is precisely
the dimension of the space of self-stresses.

In fact, we can independently compute the self-stresses of frameworks using the Maxwell–
Cremona correspondence, which dates back to the 1800s [7,15,16] .

Consider a planar graph G with straight edges, thought of as a framework. Let P be the
vertex set of G. A 3d lifting of G is a (height) function h: P → R with the following property.
Consider a face of G with vertices {pi}. Then the points {(pi , h(pi))} are all coplanar.

A Maxwell lifting of G is simply a 3d lifting in which all vertices of the outer face have
height zero.

Exercise 3.3. Check that the set of all Maxwell liftings forms a vector space.

Theorem 3.4 (Maxwell–Cremona correspondence). The following vector spaces are isomor-
phic.

1. The space of self-stresses of G.

2. The space of Maxwell liftings of G.

The proof of this theorem is via an intermediate gadget called reciprocal diagrams. Let
G be a planar framework with vertex set P and edge set E. A reciprocal diagram of G is a
(not necessarily planar) framework G′ with the following properties:

1. The vertex set P(G′) of G′ is in indexed by the set of faces of G, including the outer
face. That is, P(G′) = {pF | F a face of G}. (Note that the points pF need not be
distinct.)

2. The vertex corresponding to the outer face lies at the origin.

3. Let e = pq be an edge of G that separates faces A and B of G. Then ⃗pApB is parallel
to p⃗q. That is, there are real numbers {αe : e ∈ E} that satisfy the following. Suppose
that A lies to the left of the oriented edge p⃗q, and B lies to the right.

(pA− pB) = αe · (p− q).

Exercise 3.5. Check that the reciprocal diagrams of G form a vector space.

Exercise 3.6. Consider a reciprocal diagram of G with edge set E. Show that the real num-
bers {αe : e ∈ E} satisfying the second condition in the definition of the reciprocal diagram
give a self-stress of G. Conversely, show that a self-stress of G gives rise to a reciprocal
diagram.

We can now relate the reciprocal diagrams to the space of Maxwell liftings.

Exercise 3.7. Consider a Maxwell lifting h: P → R of G. Use the fact that each face has
a well-defined normal vector (after fixing an orientation) to show that h gives rise to a
reciprocal diagram of G. Conversely, show that each reciprocal diagram produces a Maxwell
lifting.
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In order to compute the self-stresses of a ppt, it is therefore sufficient to compute its
Maxwell liftings.

Exercise 3.8. Let h be a lifting of a planar framework G. Let F be a face of G and p be
a vertex of G that is a reflex vertex of F . Prove that if h has a global maximum (or global
minimum) at p, then h is constant on F .

Now consider a ppt, and suppose it has a nontrivial Maxwell lifting h. The convex
hull vertices have height zero, so some interior vertex must have nonzero height. Suppose
(WLOG) that p is an interior vertex such that h(p) is non-negative, and a global maximum of
h. The vertex p is necessarily a reflex vertex of some pseoudotriangular face, and therefore
every vertex of this face has the same (positive) height. We can then argue the same for
every other vertex of this face, and continuing by induction, we conclude that every vertex
p has the same height. In particular, the global maximum is zero. (The same can be argued
about global minima.) In other words, ppts have no non-trivial Maxwell liftings! As a con-
sequence, the dimension of the space of self-stresses of a ppt is zero. Therefore ppts have
no non-trivial infinitesimal motions, i.e., they are infinitesimally rigid.

Exercise 3.9. Construct an example of a framework that is rigid but not infinitesimally rigid.

Equation (1) implies that if a framework is infinitesimally rigid, it has 2n− 3+ s edges,
where s is the dimension of the self-stresses. We conclude that the minimal number of edges
in an infinitesimally rigid framework is exactly 2n− 3.

Also note that removing one or more external edges of a ppt framework does not in-
crease the dimension of the space of self-stresses: indeed, any non-trivial self stress of the
configuration without the external edges can be extended to the whole framework by zero
on the external edges that were removed. We conclude the following.

Proposition 3.10. A ppt framework with a single external edge removed has a unique non-
trivial infinitesimal motion.

Making heavy use of this proposition, Rote–Santos–Streinu construct in [18] a polytope
whose vertices are in one-to-one correspondence with ppts of a fixed point configuration.
This is a direct generalisation of the associahedron that we saw earlier.

3.1 Expansive motions

We say that an infinitesimal rigid motion is expansive if we have

〈pi − p j , vi − v j〉 ≥ 0

for every pair {i, j}. We say that a rigid motion is expansive at time 0 if its derivative evalu-
ated at 0 is an infinitesimal expansive rigid motion.

In fact, the previous proposition has a better version, due to Streinu [21].

Theorem 3.11 (Streinu). The unique nontrivial infinitesimal motion of a ppt framework with
a single external edge removed is expansive in one direction and contracting in the other. Fur-
thermore, there is a rigid motion whose derivative is precisely the unique infinitesimally expan-
sive rigid motion.

3.2 Carpenter’s rule problem (and solution)

Ppts were used by Streinu [21] to give an elegant solution to the Carpenter’s rule problem,
which asks the following. (The problem had been solved by a different method very shortly
before Streinu’s solution, in [6].)
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Question 3.12 (Carpenter’s rule problem). Consider a non-crossing polygonal chain in the
plane. Is it always possible to convexify this polygon via rigid motions in the plane?

Here is a sketch of Streinu’s solution algorithm. Consider a non-crossing polygonal chain
as a framework.

• If it is already convex, we are done.

• Otherwise, virtually fill in enough edges (external and internal) to form a ppt.

• Note that at least one external edge is virtual, so choose one and delete it.

• Now expand the mechanism along the unique expansive direction, until a collinearity
occurs.

– If the collinearity is between two adjacent edges of the polygon, “freeze” the
joint, disregarding the middle vertex, and continue.

– If the collinearity is about to occur either between two adjacent virtual edges or
between a virtual edge and an adjacent framework edge, perform an appropriate
flip so that we avoid collinearity.

– If one of the edges aligns with the missing external edge, we still have a ppt
without an external edge, so simply continue an expansive motion.

Streinu proved that this algorithm is well-defined and that it terminates, resulting in a
convex position.

4 Configuration space and the braid group action on arcs

Let Confn(R2) be the configuration space of n ordered distinct points in R2, namely:

Confn(R2) = {(p1, . . . , pn) | pi ∈ R2, pi ̸= p j for i ̸= j}.

Let UConfn(R2) be the configuration space of n unordered distinct points in R2, namely:

UConfn(R2) = Confn(R2)/Sn.

Recall that the n-strand Artin braid group Bn is defined as follows.

Definition 4.1. The n-strand (Artin) braid group is a group defined by generators

σ1, . . . ,σn−1,

and relations

σiσ jσi = σ jσiσ j if |i − j|= 1;

σiσ j = σ jσi if |i − j| ≠ 1.

It is closely related to the symmetric group Sn.

Exercise 4.2. Find a surjective homomorphism Bn→ Sn and describe its kernel. This kernel
is called the pure braid group PBn.

Elements of the braid group may be visually represented as braid diagrams (up to iso-
topy), where multiplication is represented by stacking two braid diagrams together and then
“pulling tight”.
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Note that a loop in the space UConfn(R2) is a path from a chosen configuration to itself,
up to reordering of the points. It is easy to see that such a loop corresponds to a braid
diagram.

In fact, the following theorem is well-known.

Theorem 4.3. The fundamental group of UConfn(R2) is exactly Bn. The fundamental group
of Confn(R2) is exactly PBn.

In particular, consider two distinct points in a chosen configuration. Consider a loop that
keeps all other points fixed, but swaps the positions of these two points “clockwise”. This is
called a Dehn half-twist around the arc joining these two points, and it is an element of the
fundamental group (i.e. the braid group).

Exercise 4.4. Show that the fundamental group of UConfn(R2) is generated by Dehn half-
twists. What are some minimal generating sets of Dehn half-twists?

Exercise 4.5. (Open-ended) Find a finite generating set for the fundamental group of Confn(R2).

Now fix an element of UConfn(R2), that is, a configuration of (unordered) points in R2.
Consider the collection of arcs of this configuration up to isotopy. Enumerate the positions
of the points as p1, . . . , pn, say with increasing x-coordinate for convenience. Then Bn acts
on the collection of arcs via Dehn half-twists in the segments p1p2, . . . , pn−1pn acting as the
standard generators, respectively.

We say that a collection of arcs a1, . . . , an−1 forms an An−1-chain if the arcs are non-
crossing, and if ai begins at position pi and ends at position pi+1. Clearly, Bn acts on An−1-
chains in the same way as above.
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Exercise 4.6.

1. Prove that the support of any arc is a subset of a ppt minus an external edge.

2. Prove that the same is true for any An-chain of arcs.

Exercise 4.7. Fix a convex configuration, and also fix a triangulation minus an external
edge. Find an algorithm to draw an arc whose support is precisely this fixed framework.

Exercise 4.8. (I don’t know a nice proof of this statement!) Fix a ppt on a configuration
of n points (not necessarily generic), and delete an external edge. Prove (or better, find an
algorithm) that there exists an arc whose support is exactly the fixed framework.

5 Bridgeland stability conditions on a triangulated cate-
gory

5.1 A few (only a few!) words about triangulated categories

Neeman’s book [17] is an excellent reference for triangulated categories. I will not give the
definition here in the interest of time, but will rather stick to a couple of examples.

One important example is the following. Let A be an algebra over a fixed field, and con-
sider the (additive) category of projective finite-dimensional A-modules. Call this Proj(A).
The homotopy category of Proj(A), denoted K(Proj(A)) is the category whose objects are
cochain complexes of projective finite-dimensional A-modules, and whose morphisms are
chain maps up to chain homotopy. This is a triangulated category.

Exercise 5.1. (If you know all the definitions! In any case, *) Check this.

Another important example to keep in mind is that of the (bounded) derived category
D(A ) of a fixed abelian categoryA .

Consider cochain complexes of objects in A , and cochain maps. Recall that a cochain
map is a quasi-isomorphism if it induces an isomorphism on cohomology in every degree. A
lightning definition of D(A ) (resp. D b(A )) is as follows: it is the category whose objects
are (bounded) cochain complexes of objects inA , and whose morphisms are cochain maps
where quasi-isomorphisms have been formally inverted. This is a triangulated category.

Exercise 5.2. (If you know all the definitions! In any case, *) Check this.

Exercise 5.3. Play around with the construction of the bounded derived category for some
manageable (but not necessarily trivial) abelian categories. For example, you could try:
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1. takingA to be the category of finite-dimensional vector spaces;

2. takingA to be the category of finite-dimensional modules over the algebra k[ε]/ε2.

3. takingA to be the category of finite-dimensional modules over the algebra k[ε]/εn.

As a warm-up, try to write down some non-trivial cochain complexes and some cochain
maps on objects in the categories mentioned above. Compute cohomology: can you find
two cochain complexes that are not chain homotopic, that have the same cohomology?

5.2 A crash course on bounded t-structures

Triangulated categories are not usually abelian, but sometimes they can be “filtered by
abelian categories”.

5.2.1 Bounded t-structures

A particularly nice way this might happen is if the category supports a bounded t-structure.

Definition 5.4. Let C be a triangulated category. A bounded t-structure on C is determined
by a full abelian subcategoryA ⊂C , satisfying the following property. Every object X ∈ C
has a unique finite filtration (called the cohomology filtration with respect toA ):

0= X i X i−1 · · · X j = X

Ai−1 Ai−2 · · · A j

+1 +1 +1

such that Am ∈A [m].

The subcategoryA ⊂C is called the heart of this bounded t-structure. For the original
reference and a more general definition of t-structures, see [4].

In the presence of a bounded t-structure, working with a triangulated category often
(basically) reduces to working with the heart, and then extending everything via the unique
filtration. We adopt this point of view for convenience.

Note, of course, that the same triangulated category C can (and often does) have many
different bounded t-structures. The interplay between the different t-structures can have
rich combinatorial consequences. See, e.g. [12].

5.2.2 Extended exercise: a non-standard t-structure

LetA be the abelian category whose objects are diagrams

Vt

Vh

M

where Vt and Vh are complex vector spaces and M is a linear map from Vt to Vh. A morphism
is a commutative diagram as follows.

Vt Vh

Wt Wh

M

ft fh

N
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(Some of you may recognise this as the category of representations of a certain quiver.)

Exercise 5.5. Convince yourself that this category is, in fact, abelian.

Exercise 5.6. Shaw that up to isomorphism, there are exactly two simple (or irreducible)

objects in this category, namely S1 = C
0
−→ 0 and S2 = 0

0
−→ C.

Next consider the bounded derived category C = D(A ). The objects of C can be
thought of as diagrams

V • =

V •t

V •h

M• ,

where V •h and V •t are cochain complexes of vector spaces, and M• is a cochain map.
Set B to be the collection of objects whose cohomologies are supported in the shaded

region shown below:

−1 0 1

· · · • • • · · ·

· · · • • • · · ·

M M M

Explicitly, V • ∈B if:

H i(V •t ) = 0 for all i ̸= 0, H i(V •h ) = 0 for all i ̸= 1.

Exercise 5.7. Describe the category B as explicitly as possible. For example, what objects
generate this category?

Exercise 5.8. (*) Show thatB is the heart of a bounded t-structure on C .

Exercise 5.9. Show that the categoriesA andB are not equivalent.

Exercise 5.10. Is it true that C = Db(B)?

5.3 A crash course on (Bridgeland) stability conditions

Consider a triangulated category C that has a bounded t-structure with heart A . Recall
that in suitably nice cases, objects ofA (or indeed, any suitably nice abelian category) have
Jordan–Hölder filtrations, whose subquotients are simple. It is therefore natural to try and
understand objects ofA via their (simple) composition factors. However, this point of view
is necessarily limited for a few reasons, including:

1. the JH series itself is not unique, so it is hard to get a handle on a canonical JH series;

2. the JH series is fundamentally an “abelian” construction, because it relies on simple
objects, and the notion of which objects are simple changes dramatically if you alter
the t-structure; and

3. once you fix a heart, you don’t have a choice of which objects are simple.

A stability condition is a piece of extra data on C that simultaneously remedies all of
the problems above. Once again, we focus on the case when C has a chosen bounded t-
structure with heartA . (However, there is an independent, equivalent definition that does
not involve any choices of t-structure. See [5, Definition 5.1 and Proposition 5.3])
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Definition 5.11. Let C be a triangulated category with a bounded t-structure whose heart
isA . A Bridgeland stability condition on C (with respect to the heartA ) consists of a group
homomorphism

Z : K(A )→ C,

with the following properties.

1. For every A∈A , we have Z(A) ∈H.

2. An object A∈A is called semistable if whenever 0 ̸= B ⊂ A, we have arg(B)< arg(A).

3. Every object X ∈A has a unique finite filtration

0= X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

whose successive subquotients Ai = X i/X i−1 are semistable of decreasing argument:
arg(A1)> arg(A2) · · ·> arg(An).

Some references for Bridgeland stability conditions: [3,5].

Exercise 5.12. Write down one (or more!) explicit Bridgeland stability conditions on each
of the heartsA andB in the extended exercise above.

6 The story of the zigzag category type A

Fix n ∈ N. We work with a triangulated category C =Cn, which we call the zigzag category
of type An. A precise definition can be found in e.g. [2, Section 2.3]. We will not dwell on
the precise definitions here, but rather present the properties and flavour of this category.

• C is generated by objects Pi , where i ranges from 1 to n.

• The generating objects satisfy

Homm(Pi , Pi) =

¨

k m= 0,2

0 otherwise.

Homm(Pi , Pj) =

¨

k m= 1 and |i − j|= 1,

0 otherwise.

Note that the unique map of degree zero (up to scaling) from Pi to Pi is just the identity
map. The unique map of degree two (up to scaling) from Pi to Pi is called the loop
map.

• C has a bounded t-structure that we call the standard t-structure on C . The heart is
generated by complexes in which all maps have degree ≤ 1; that is, which have no
loop maps in them. The simple objects in the heart are precisely the Pi .

• The Grothendieck group of C is isomorphic to the root lattice of type A, and carries
an action of the symmetric group Sn+1.

• This action lifts to an action of the braid group Bn+1 on Cn.

Consider at first a configuration of n points arranged in a straight line. Khovanov–Seidel
[11] establish a Bn-equivariant bijection between spherical objects of Cn and isotopy classes
of arcs in the configuration that begin and end at points in the configuration but do not
intersect any point of the configuration in their interior.

Now vary the configuration. The following results are joint work with Anand Deopurkar
and Anthony Licata. We observe the following.
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1. A stability condition with respect to the standard heart is simply a configuration of
points.

2. Any other stability condition is specified by a configuration of points together with an
An chain of arcs joining successive points.

3. The semistable objects in a standard stability condition prescribed by the given con-
figuration are precisely the (isotopy classes of) allowed arcs in the configuration. The
Harder–Narasimhan filtration pieces of a given spherical object can be read off from
its support.

4. This procedure realises spherical objects as rational points of (the geometric realisa-
tion of) a simplicial complex whose maximal simplices are ppts with an external edge
removed.

5. This simplicial complex is topologically a sphere, and the spherical objects of the cat-
egory give a dense subset of this sphere.

6. An enhanced version of Streinu’s algorithm for the carpenter’s rule problem gives an
explicit contraction of the space of stability conditions of Cn to a point, giving a new
proof of its contractibility.
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