Categorical q_d-deformed rational numbers & compactifications of stability space

Asilata Bapat (ANU)

+ Louis Becker
Anand Deopurkar
Anthony Licata
The big picture

$B_r C \xrightarrow{\text{categorify}} B_r C \&$
The big picture

$B_r \to V \xrightarrow{\text{categorify}} B_r \to C \to \mathcal{C}$ (triangulated)
The big picture

$B_r \xrightarrow{\text{V}} \xrightarrow{\text{categorify}} B_r \subset \mathcal{C}$

$\text{Stab } \mathcal{C} \xrightarrow{\text{compactify}} \frac{\text{Stab } \mathcal{C}}{\mathcal{C}} \xrightarrow{\gamma} \frac{\text{Stab } \mathcal{C}}{\mathcal{C}}$
The big picture

\[B_r \rightarrow V \xrightarrow{\text{categorify}} B_r \rightarrow C \rightarrow \mathcal{C} \]

\[\text{Stab} \mathcal{C} \xrightarrow{\text{compactify}} \overline{\text{Stab} \mathcal{C}} \]

Q: What is the topology of \(\text{Stab} \mathcal{C} \)?

Q: What can we read off about \(B_r \) from its action on \(\overline{\text{Stab} \mathcal{C}} \)?

(triangulated)
Plan

1. Generalities on G, Stab, and the B_f-action

2. The family of compactifications

3. The three-strand braid group
Categorical B_Γ action

\mathcal{C} = 2-CY category of connected graph Γ
[categorifies Burau rep of B_Γ]
Categorical $B\tau$ action

$\mathcal{C} = 2$-cy category of connected graph Γ
[categorifies Burau rep of $B\tau$]

Important features:

- $\mathcal{C} = \{ P_i \mid i \text{ vertex} \}$

- Lots of spherical objects
 \Rightarrow lots of auto-equivalences
Categorical B_r action

In particular, each P_i is spherical.

- $\sigma_{P_i} \in \mathcal{C}$ is an autoequivalence;
- σ_{P_i} satisfy the braid relations (of Γ)

$\Rightarrow B_r \in \mathcal{C}$ (and yields Burau rep on Grothendieck group)
Bridgeland stability conditions & Br-action

A stability condition τ is data on \mathcal{C} that yields a family of metrics on \mathcal{C}: each arrow in \mathcal{C} has a (τ, q)-length.
Bridgeland stability conditions & Br-action

A stability condition Z is data on C that yields a family of metrics on C: each arrow in C has a (Z,q)-length.

The size of $X \in ob C$ is measured by “pulling tight to a geodesic” $0 \to X$.

Bridgeland stability conditions & Br-action

The size of $X \in \mathcal{C}$ is measured by "pulling tight to a geodesic" $0 \to X$.

This is called the "q-mass" of X wrt \mathcal{C}.
Bridgeland stability conditions & Br-action

The size of $X \in \text{ob} \\mathcal{C}$ is measured by "pulling tight to a geodesic" $0 \rightarrow X$.

This is called the "q-mass" of X wrt \mathcal{C}.

$$X = \quad \text{then} \quad M_{q, \mathcal{C}}(X) = \sum_\phi q^\phi \cdot |A_i|$$

segments \leftrightarrow semistables
Bridgeland stability conditions & B_r-action

[Bridgeland] Stab \mathcal{C} is a complex manifold.

Since $B_r \subset \mathcal{C}$, we also have $B_r \subset \text{Stab} \mathcal{C}$.
Limiting operations on Stable 6
Limiting operations on $\text{Stab } \mathcal{C}$

1. Fix $\beta \in B_r$ and $\tau \in \text{Stab } \mathcal{C}$.
 Consider $\lim_{n \to \infty} \beta^n \tau$.

\[\text{Diagram of a network with nodes and edges.}\]
Limiting operations on Stab \mathcal{C}

1. Fix $\beta \in B_\mathcal{F}$ and $\tau \in \text{Stab } \mathcal{C}$.

Consider $\lim_{n \to \infty} \beta^n \tau$.

[BDL, BBL] Taking $\beta = \xi^x$ for X spherical:

$$\lim_{n \to \infty} \mathcal{M}_{\beta^n \tau, q} (\gamma) = q \cdot \text{dim } \text{Hom}(X, \gamma)$$

up to simultaneous scalar
Limiting operations on Stab C

Shrink all but one of the simple semistables to zero.
Limiting operations on Stab 6

Shrink all but one of the simple semistables to zero.

In the limit, the q-mass counts the “q-occurrences” of the remaining semistable in any given object.
Limiting operations on Stable C

Moral: Limits may not make sense as stability conditions, but their q-masses make sense.
Limiting operations on Stab_e

Moral: Limits may not make sense as stability conditions, but their q-masses make sense.

Mass map

$\text{Stab}_e \rightarrow \mathbb{P} \mathcal{R}_s^*$

$\mathbb{P} \mathcal{R}_s^* \rightarrow [x \mapsto m_{\text{q,m}}(x)]/\sim$
Mass map & compactification

\[\text{Stab } \mathcal{C} \rightarrow \mathbb{P} \mathbb{R}^s \]

\[\mathcal{Z} \rightarrow \left[x \mapsto m_{q,z}(x) \right] /_{\sim} \]

- \text{[BDL, BBL]} The mass map is injective, and \(\text{Stab}^q \mathcal{C} \) is compact.
Mass map & compactification

- $[BDL, BBL]$ The mass map is injective, and $\overline{\text{Stable}}^q$ is compact.

- In the boundary, we see:

 $$\text{Hom} := \lim_{n \to \infty} W_{\beta, z, q}$$ for β = spherical twist

 $$\text{occ} := q\text{-occurrences of a fixed semistable}$$
General conjectures & questions

Q: $\overline{\text{Stab}}^b \mathcal{C} = \text{closed ball}$?

Q: $\text{how \& occ [+] linear combinations}$
 recover a dense subset of the boundary sphere?
General conjectures & questions

Q: $\overline{\text{Stab}}^g \mathcal{C} \approx \text{closed ball}$?

Q: how & occ [$+ \text{linear combinations}$]
 recover a dense subset of the boundary sphere?

Q: What does this tell us about B_{T}?
 What are the other points on the boundary?
The story of the 3-strand braid group
The story of the 3-strand braid group

\[B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle \]

\[B_3 \twoheadrightarrow \text{PSL}_2(\mathbb{Z}) \]

\[\sigma_1 \mapsto \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad \sigma_2 \mapsto \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \]
The story of the 3-strand braid group

\[B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle \]

\[B_3 \rightarrow \text{PSL}_2(\mathbb{Z}) \]

\[\sigma_1 \mapsto \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad \sigma_2 \mapsto \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \]

• PSL$_2(\mathbb{Z})$, and hence B_3, acts on $\mathbb{C} \cup \partial \mathbb{C} \times \mathbb{S}^3$
 by fractional linear transformations

• Action preserves \mathbb{H} and $\mathbb{R} \cup \partial \mathbb{C} \times \mathbb{S}^3$
The story of the 3-strand braid group

For the remainder of the talk, take

$$
\mathcal{C} = \mathcal{C}(\cdots) = \langle P_1, P_2 \rangle \circ B_3
$$

Fact:

$$
\text{Stab } \mathcal{C} \cong H
$$

$$
\begin{array}{cc}
\mathcal{C} & \circ \\
B_3 & B_3 \text{ via } \text{PSL}_2(\mathbb{Z})
\end{array}
$$
The story of the 3-strand braid group

Take $\mathcal{C} = \mathcal{C}(\ast \cdots \ast) = \langle P_1, P_2 \rangle \otimes B_3$

Thm [BDL]: For $q=\pm$:

1. $\overline{\text{hom}}$ and occ coincide.

2. $\overline{\text{hom}}_X \mapsto \pm \overline{\text{hom}}(X, P_2) / \overline{\text{hom}}(X, P_1)$ is a B_3-equivariant bijection from the spherical objects of \mathcal{C} to $\mathbb{Q} \langle \xi \delta \rangle$.
The \textbf{Liouville} functionals as rationals

Pictorially, at $q=1$:
The q-deformed story for B_3

Thm [BBL] For an indeterminate q:

1. $\overline{\text{hom}}_q(x) \mapsto \pm q^\omega \overline{\text{hom}}_q(X, P_2)$ and

 $\text{occ}_q(x) \mapsto \pm q^\omega \frac{\text{occ}(P_2, X)}{\text{occ}(P_1, X)}$ are B_3-equivariant.
The q-deformed story for B_3

Thm [BBL] For an indeterminate q:

(1) \[\overline{\text{hom}}_x \mapsto \pm q^{\alpha} \overline{\text{hom}}_q (X, P_2) \quad \text{and} \quad \overline{\text{hom}}_q (X, P_1) \]

\[\text{occ}_x \mapsto \pm q^{\beta} \frac{\text{occ} (P_2, X)}{\text{occ} (P_1, X)} \]

are B_3-equivariant.

The B_3-action on the right is by fractional linear transformations via Burau matrices.
The q-deformed story for B_3

Pictorially, at $q \neq 1$:

Diagram with mathematical expressions and arrows indicating relationships between terms.
The q-deformed story for B_3

Thm [cont'd]

2) $\pm q^{(1)} \frac{\text{occ}(p_2, x)}{\text{occ}(p_1, x)}$ are exactly the q-deformed rationals of Morier-Genoud - Ovsienko.

3) $\pm q^{(1)} \frac{\text{hom}(X, p_2)}{\text{hom}(X, p_1)}$ give a new q-deformation of $\mathbb{Q}U \tilde{\mathfrak{g}}^3$.
The q-deformed story for B_3

For $\frac{r}{s} \in \mathbb{Q} \cup \{\infty\}$ corresponding to the spherical object X, set:

1. $\left[\frac{r}{s} \right]_q^\# := \pm q^{1} \frac{\text{occ}(P_2, X)}{\text{occ}(P_1, X)}$ \hspace{1cm} \text{right } q\text{-deformed rational}$

2. $\left[\frac{r}{s} \right]_q^b := \pm q^{1} \frac{\hom(X, P_2)}{\hom(X, P_1)}$ \hspace{1cm} \text{left } q\text{-deformed rational}$
Specialising q

Now fix $0 < q < 1$.
Consider the ideal triangle with vertices $0, 1, \infty$ [corresponds to a piece of stability space].

The $\text{PSL}_2(\mathbb{Z})$-orbit:

$[q=1]$
Specialising \(q \)

Now fix \(0 < q < 1 \).
Consider the ideal triangle with vertices \(0, 1, \infty \).

The \(\text{PSL}_2, \mathbb{Q}_b(\mathbb{Z}) \) - orbit:

\[q = 0.3 \]
Specialising q

At $q = 1$, left & right limits of Farey triangles agree.
Specialising \(q \)

At \(q \neq 1 \), the left & right limits of Farey triangles do not agree — we get \([\frac{r}{s}]^b_q \) & \([\frac{r}{s}]^*_q \)!
Specialising \(q \)

At \(q \neq 1 \), the left & right limits of Farey triangles do not agree - we get \(\left[\frac{r}{s} \right]_q^b \) & \(\left[\frac{r}{s} \right]_q^* \)!

Moreover, the entire semicircle connecting them lies in the limit.
\[
\text{Stab}^g S \text{ at a fixed positive } q
\]

Thm [B-Becker-Licata]

1. The union of the closed semicircles \([\frac{r}{s}]_q^b, [\frac{r}{s}]_q^a\) is dense in the boundary of \(\overline{\text{Stab}^g S}\).

2. The remaining points of the boundary are exactly the "q-irrationals".

3. The boundary is homeomorphic to \(S^1\).
Thank you!