FAITHFULNESS QUESTIONS ABOUT GENERALISED BURAU REPRESENTATIONS

Asilata Bapat, Hoel Queffelec

Available at https://arxiv.org/abs/2409.00144

THE BRAID GROUP B_n

- A braid is a continuous motion of *n* distinct points in the plane that
 - avoids collisions; and
 - ends at the original configuration.

THE BRAID GROUP B_n

- We consider motions up to homotopy.
- Nevertheless, the braid group is infinite.
- The symmetric group *S_n* is a natural quotient.

THE BRAID GROUP B_n

- B_n is generated by $\{\sigma_i \mid 1 \le i < n\}$.
- We have the relations

$$-\sigma_i\sigma_j = \sigma_j\sigma_i \quad |i-j| > 1;$$

$$-\sigma_i\sigma_j\sigma_i = \sigma_j\sigma_i\sigma_i \quad |i-j| = 1$$

THE BRAID GROUP B_n

- B_n is generated by $\{\sigma_i \mid 1 \le i < n\}$.
- We have the relations:

$$-\sigma_i\sigma_j=\sigma_j\sigma_i \quad |i-j|>1;$$

$$-\sigma_i\sigma_j\sigma_i=\sigma_j\sigma_i\sigma_j \quad |I-J|=1.$$

REPRESENTATIONS OR MATRIX REALISATIONS OF B_n

Does B_n **embed into a finite matrix group?** Yes (early 2000s): B_n has a faithful representation of dimension $\binom{n}{2}$

Are there smaller candidates? The Burau representation was a good candidate for a while. It has dimension (n-1).

REPRESENTATIONS OR MATRIX REALISATIONS OF B_n

Does B_n **embed into a finite matrix group?** Yes (early 2000s): B_n has a faithful representation of dimension $\binom{n}{2}$.

Are there smaller candidates? The Burau representation was a good candidate for a while. It has dimension (*n* − 1).

REPRESENTATIONS OR MATRIX REALISATIONS OF B_n

Does *B_n* embed into a finite matrix group?

Yes (early 2000s): B_n has a faithful representation of dimension $\binom{n}{2}$.

Are there smaller candidates?

The Burau representation was a good candidate for a while. It has dimension (n - 1).

HISTORY OF THE BURAU REPRESENTATION

- The Burau representation was defined in the 1930s [Burau].
- It is faithful for $n \leq 3$ [Magnus–Peluso '60s].
- It is not faithful for $n \ge 5$ [Moody '91, Long–Paton '93, Bigelow '99]
- The *n* = 4 case is still unknown!

THE BURAU REPRESENTATION OF B_n

- The Burau action is on a vector space with basis {α_i | 1 ≤ i < n}, equipped with a certain *q*-pairing (−, −).
- The formula is:

$$\sigma_i(v) = v - \langle \alpha_i, v \rangle \alpha_i.$$

• It deforms the standard or reflection representation of *S*_n.

THE BURAU REPRESENTATION OF B_n

- The Burau action is on a vector space with basis {α_i | 1 ≤ i < n}, equipped with a certain *q*-pairing (−, −).
- The formula is:

$$\sigma_i(v) = v - \langle \alpha_i, v \rangle \alpha_i.$$

• It deforms the standard or reflection representation of *S_n*.

THE BURAU REPRESENTATION OF B_n

- The Burau action is on a vector space with basis {α_i | 1 ≤ i < n}, equipped with a certain *q*-pairing (−, −).
- The formula is:

$$\sigma_i(v) = v - \langle \alpha_i, v \rangle \alpha_i.$$

• It deforms the standard or reflection representation of S_n.

ARTIN-TITS GROUPS

- Let Γ be an undirected graph.
- The group B_{Γ} is generated by $\{\sigma_i \mid i \in \Gamma\}$.
- We have the relations:

$$- \sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{if } i \nleftrightarrow j;$$

 $- \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{ if } i \leftrightarrow j.$

B_n as an artin-tits group

- B_n is the Artin–Tits group of a chain with (n-1) vertices.
- For instance, the following graph gives $B_{\Gamma} = B_4$.

$$\Gamma = 0 - 0 - 0$$

THE BURAU REPRESENTATION FOR ARTIN-TITS GROUPS

- As before, the Burau action is on a vector space spanned by {α_i | i ∈ Γ}, with a pairing (-, -).
- The action is by the same formula:

$$\sigma_i(v) = v - \langle \alpha_i, v \rangle \alpha_i.$$

FAITHFUNLESS QUESTIONS

- The Burau representation of B_n is unfaithful for $n \ge 5$.
- So if Γ contains a 4-chain as a full subgraph, then the Burau representation of B_{Γ} is unfaithful.
- However, we are left with a large number of open cases!

RESULTS

Theorem (B.-Queffelec)

The Burau representation of the Artin–Tits group of the square (type \widehat{A}_3) is not faithful.

Theorem (B.-Queffelec)

The Burau representation of the Artin–Tits group of the

3-pointed star (type D_4) is not faithful over $\mathbb{Z}/n\mathbb{Z}$ for $n \leq 16$.

BROAD STRATEGY

- Consider a richer action of the group that remembers more information.
- However, this action may not be linear.

INTERLUDE: ARCS GIVE RISE TO BRAIDS

A half Dehn twist around an arc joining two points is the braid that swaps the endpoints "counterclockwise" around this arc.

INTERLUDE: B_n ACTS ON ARCS

- σ_i moves an arc by twisting around the (i, i + 1) segment.
- *B_n* also acts on collections of arcs.
- There is a correspondence

arcs → Burau vectors;

intersection numbers ~> pairing.

INTERLUDE: B_n ACTS ON ARCS

- σ_i moves an arc by twisting around the (i, i + 1) segment.
- B_n also acts on collections of arcs.
- There is a correspondence

arcs → Burau vectors;

intersection numbers ~ pairing.

INTERLUDE: B_n ACTS ON ARCS

- σ_i moves an arc by twisting around the (i, i + 1) segment.
- *B_n* also acts on collections of arcs.
- There is a correspondence

arcs → Burau vectors;

intersection numbers ~ pairing.

Strategy for the classical braid group (Bigelow) If arcs α , β intersect but corresponding vectors have zero pairing, then $\alpha\beta\alpha^{-1}\beta^{-1}$ is in the kernel.

Strategy for the classical braid group (Bigelow)

If arcs α , β intersect but corresponding vectors have zero pairing, then $\alpha\beta\alpha^{-1}\beta^{-1}$ is in the kernel.

For Artin–Tits groups, we don't usually have any action on arcs!

Key insight in general

- Instead, consider an action on a triangulated category.
- Instead of counting intersections between arcs, count the number of morphisms between objects in the category.

For Artin–Tits groups, we don't usually have any action on arcs!

Key insight in general

- Instead, consider an action on a triangulated category.
- Instead of counting intersections between arcs, count the number of morphisms between objects in the category.

ARC ACTION FOR THE SQUARE GRAPH A_3

• \widetilde{A}_3 is realised by arcs on the annulus with 4 marked points.

• We can unfold an arc to the universal cover of the annulus.

KERNEL ELEMENT IN BURAU OF \widetilde{A}_3

The following two arcs intersect, but have zero pairing.

Conclusion

$$\begin{split} &\alpha = \sigma_3^2 \sigma_4 \sigma_3 \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_4 \sigma_3 \sigma_2 \sigma_1^{-2} \sigma_4 \sigma_3 \sigma_4^{-1} \sigma_1^2 \sigma_2^{-1} \sigma_3^{-1} \sigma_4^{-1} \sigma_3 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_4^{-1} \sigma_3^{-2}, \\ &\beta = \sigma_1^2 \sigma_2^{-1} \sigma_4 \sigma_1 \sigma_3^{-1} \sigma_2 \sigma_4^{-1} \sigma_3 \sigma_1 \sigma_4 \sigma_1 \sigma_2^{-1} \sigma_4^{-2} \sigma_3 \sigma_2 \sigma_3^{-1} \sigma_4^2 \sigma_2 \sigma_1^{-1} \sigma_4^{-1} \sigma_1^{-1} \sigma_3^{-1} \sigma_4 \\ &\sigma_2^{-1} \sigma_3 \sigma_1^{-1} \sigma_4^{-1} \sigma_2 \sigma_1^{-2}. \end{split}$$

Then $\alpha\beta\alpha^{-1}\beta^{-1}$ is a non-trivial element in the kernel.

KERNEL ELEMENT IN BURAU OF \tilde{A}_3

The following two arcs intersect, but have zero pairing.

Conclusion

$$\begin{split} &\alpha = \sigma_3^2 \sigma_4 \sigma_3 \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_4 \sigma_3 \sigma_2 \sigma_1^{-2} \sigma_4 \sigma_3 \sigma_4^{-1} \sigma_1^2 \sigma_2^{-1} \sigma_3^{-1} \sigma_4^{-1} \sigma_3 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_4^{-1} \sigma_3^{-2}, \\ &\beta = \sigma_1^2 \sigma_2^{-1} \sigma_4 \sigma_1 \sigma_3^{-1} \sigma_2 \sigma_4^{-1} \sigma_3 \sigma_1 \sigma_4 \sigma_1 \sigma_2^{-1} \sigma_4^{-2} \sigma_3 \sigma_2 \sigma_3^{-1} \sigma_4^{2} \sigma_2 \sigma_1^{-1} \sigma_4^{-1} \sigma_1^{-1} \sigma_3^{-1} \sigma_4 \\ &\sigma_2^{-1} \sigma_3 \sigma_1^{-1} \sigma_4^{-1} \sigma_2 \sigma_1^{-2}. \end{split}$$

Then $\alpha\beta\alpha^{-1}\beta^{-1}$ is a non-trivial element in the kernel.

HOW DO WE FIND SUCH EXAMPLES?

- Targeted computer search guided by several heuristics.
- For \widetilde{A}_3 , easier to use a group action on a category than on arcs!
- In any case, the categorical approach is the one that generalises to *D*₄ and other cases.

THANK YOU!

