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Some foundations

We begin by briefly introducing some language to talk about the
objects we will encounter in this course. We will revisit this foun-
dational material several times throughout the course in several
contexts.

Sets

Informally, a set is an unordered collection of objects with no repe-
titions. This is the most basic object usually used to discuss almost
every construction in mathematics. If T is a set and x is any object,
we have the following dichotomy1: either x is an element of T, de- 1 A situation in which exactly one of

two possible options is true.noted x ∈ T, or x is not an element of T, denoted x /∈ T. Two sets
are equal if and only if they have the same elements. That is, ev-
ery element of the first set is an element of the second set, and vice
versa.

The Zermelo–Fraenkel axioms2 can be used to develop this the- 2 Historical remarks and something
about ZFC?ory more formally, but we will not go into the details in this course.

Sets are often denoted by capital letters such as S, T, and poten-
tial elements as small letters x, y3. If we are listing all the elements 3 This is just a convention. In fact, sets

are often elements of other sets, so
there is no clear distinction between
sets and potential elements.

of a set, we put them in curly braces, for example {1, 2, 3, 4}. We
can also specify a set by taking all elements of another set that sat-
isfy a particular property, for example {x ∈N | x is even}.

A set S is a subset of a set T, denoted S ⊂ T, if every element of
S is also an element of T. A set U is a superset of a set T, denoted
U ⊃ T, if every element of T is also an element of U. There is a
unique set that contains no elements. It is called the empty set and is
denoted ∅. The empty set is vacuously4 a subset of every set. 4 We say that a statement of type "if

. . . then . . . ", or equivalently "for every

. . . we have . . . " is vacuously true if
nothing satisfies the "if" or "for every"
condition.

Here are some things we can do with sets.

Example 1.

1. {1, 2} ∪ {2, 3} = {1, 2, 3}.
2. {1, 2} ∩ {2, 3} = {2}.

Unions The union of S and T, denoted S ∪ T, is the set such that
each element of S ∪ T is either an element of S or of T, or both.

Intersections The intersection of S and T, denoted S ∩ T, is the set
such that each element of S ∩ T is both an element of S and an
element of T.

Power set The power set of S, denoted P(S), is the set whose ele-
ments are all the subsets of S.

Example 2.

1. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.
2. {1, 2} × {2, 3} =
{(1, 2), (1, 3), (2, 2), (2, 3)}.

3. {1, 2} ×∅ = ∅.

Cartesian products The Cartesian product of S and T, denoted S× T,
is the set whose elements are ordered pairs (x, y), where x runs
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over all the elements of S, and y runs over all the elements of
T. Note that if one of the two sets is empty, then the Cartesian
product is also empty.

Relations

Informally, a relation is a specification that links objects of one set
and objects of another set. If x is related to y under a relation R,
we say that the ordered pair (x, y) satisfies R. For example, we
may consider a relation called is-factor-of, on pairs of natural
numbers, which specifies that (x, y) satisfies is-factor-of if and
only if x is a factor of y. In this case, (1, 3), (3, 27), (4, 24) are all
examples of ordered pairs that satisfy the relation is-factor-of5. 5 In English, we might read one of

these as "3 is a factor of 27".

To model this mathematically, we formally define a relation
as a subset R ⊂ S × T, where S and T are two sets. In this case,
the elements of R are precisely the ordered pairs that we think
of as satisfying the relation R. In the previous example, we have
S = T = N. If we want R to model the relation is-factor-of, then
we take R to be the subset of N×N consisting of exactly the pairs
(x, y) where x is a factor of y.

As in the previous example, we often want S and T to be the
same set. In this case, we say that a subset R ⊂ S× S is a (binary6) 6 This is a binary relation because we

are looking at a subset of the product
of two copies of S. An n-ary relation
on S would just be a subset of the
product of n copies of S.

relation on S.

Functions

Informally, a function is a rule that can be used to find the output
value given a certain input value. This can be formally expressed
using relations, as follows. Let R ⊂ S× T be a relation. We say that
R is a function if whenever (s, t) ∈ R and (s, u) ∈ R, we have t = u.
In other words, any first coordinate has at most one possible second

Example 3.

1. The relation {(a, b) ∈ N ×N |
a + b is even } is not a function
because, for example, (2, 4) and (2, 0)
are both in it.

2. The relation {(a, b) ∈ N×N | b =
a2} is a function.

coordinate. In this case, we often write t = R(s) or often t = f (s).
We also have the following definitions.

Domain The domain of this function is the set

{x ∈ S | (x, y) ∈ R for some y ∈ T}.

Codomain (or range) The codomain of this function is the set

{y ∈ T | (x, y) ∈ R for some x ∈ S}.

If S′ is the domain and T′ is the range, we usually say that f is a
function from S′ to T′, written f : S′ → T′.

Graphs

Graphs provide an extremely useful way to organise information
about relations. For the moment we use them as powerful visual
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aids, but we will see later that graphs also lend themselves well to
computational tools.

A directed graph consists of a vertex set V and an edge set E. We
require that the edge set E is a relation on V, that is, E ⊂ V × V.
We will write this graph as (V, E). Visually, we draw the vertices as
nodes and an edge (v, w) as an arrow from v to w.

a

b

c

a

b

c

Figure 1: A directed and an undirected
graph

We think of undirected graph as a directed graph with the extra
property that the edge relation E is symmetric. That is, (v, w) ∈
E if and only if (w, v) ∈ E. In this case, we draw the vertices as
nodes, and we draw a single segment joining v and w for every
corresponding pair of edges (v, w) and (w, v).

Representing a relation on a set as a graph

Note that the definition of a graph is very similar to the definition
of a relation on a single set — in fact, a directed graph is just an-
other way of looking at a relation on a set. More precisely, let R be
a relation on a set S. Then we can construct a directed graph whose
vertex set is S and whose edge set is R. This point of view is useful
in certain situations, as we will see later.

The adjacency matrix of a graph

Recall that a matrix is a rectangular array, usually filled with num-
bers. An m× n matrix M has m rows (numbered 1 through m) and
n columns (numbered 1) through n). The entry in the ith row and
jth column is denoted Mij.

It is extremely useful to encode the data of a graph into a matrix,
called an adjacency matrix. Suppose (V, E) is a graph7. Choose an 7 For simplicity we usually consider

finite sets V when we construct adja-
cency matrices but in general V may
be infinite.

ordering on the elements of V, say the ordered tuple (v1, . . . , vn).
We construct the adjacency matrix as an n× n matrix A, such that

Aij =

1, (i, j) ∈ E,

0, (i, j) /∈ E
.

The adjacency matrix is a matrix that only contains the elements
0 and 1. It encodes the entire information contained in the original
graph, in a way that is highly adapted to calculations — we will see
more of this soon.

Example 4. Let (V, E) be the directed
graph shown in Figure 1, with the order-
ing on the vertices chosen to be (a, b, c).
Then the adjacency matrix is

A =

0 1 0
0 0 1
1 0 0

 .

Now if we reorder the vertices as (c, b, a),
the adjacency matrix becomes

A′ =

0 0 1
1 0 0
0 1 0

 .

Note that changing the ordering on the elements of V produces
a different-looking adjacency matrix. It is related to the original
adjacency matrix by a serious of simultaneous swaps of correspond-
ing row and column numbers. For example, the adjacency matrix
given by the ordering (v2, v1, v3, . . . , vn) can be obtained from A by
swapping rows 1 and 2 and also swapping columns 1 and 2.

Properties of relations

Sometimes, relations (on a single set) satisfy further special prop-
erties. Here are some common ones. Remember that a relation R is
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simply a subset of S× S for some set S. So the following properties
are about R as a whole, as a subset of S× S.

Example 5.

1. The relation

R = {(a, b) ∈N×N | a divides b}

is reflexive, anti-symmetric, and
transitive.

2. The relation

R = {(a, b) ∈N×N | a + b is odd}

is symmetric but not reflexive or
transitive.

Reflexivity A relation R is reflexive if (x, x) ∈ R for each x ∈ S.

Symmetry A relation R is symmetric if whenever we have (x, y) ∈ R,
we also have (y, x) ∈ R.

Anti-symmetry A relation R is anti-symmetric if having both (x, y) ∈
R and (y, x) ∈ R implies that x = y.

Transitivity A relation R is transitive if whenever (x, y) ∈ R and
(y, z) ∈ R, we also have (x, z) ∈ R.

Note that the properties of being symmetric and anti-symmetric
are almost but not quite complementary to each other: if a rela-
tion is both symmetric and anti-symmetric, it means that only
pairs of the form (x, x) can be in the relation8. However, not all 8 Convince yourself of this from the

definitions!pairs of this form have to satisfy the relation (i.e. the relation
need not be reflexive).

The adjacency matrix can be helpful in order to read off prop-
erties about the relation. For example, since a reflexive relation
has all possible pairs (x, x) in it, all diagonal entries Aii of the
adjacency matrix must equal 1, and conversely if Aii = 1 for each
i, then the relation is reflexive.

Similarly, a relation is symmetric if Aij = Aji for each i, j. That is,
if the adjacency matrix is symmetric. A relation is anti-symmetric
if whenever i 6= j and Aij = 1, we have Aji = 0.

What does it mean in terms of the adjacency matrix if a rela-
tion is transitive? The answer to this question is slightly more
complicated, and we will get back to it later.

Closures of relations

If S is any set, then the entire cartesian product S × S is itself a
relation on S. Note that certain properties are true for S × S: for
example, of the four properties discussed in the previous section,
S× S has reflexivity, symmetry, and transitivity.

If R is any relation on S, it makes sense to ask about the reflexive
closure (resp. symmetric or transitive closure) of R. In the following
discussion we’ll talk about the reflexive closure, but you can use the
same definition for symmetric and transitive closures respectively.

Informally, we’d like the reflexive closure of R to be the smallest
relation on S that contains R, and which is reflexive. If R is already
reflexive, then it is its own reflexive closure. Otherwise, the reflex-
ive closure will contain some more elements. But what does smallest
mean in the above context9? To make this precise, we give the fol- 9 If S is a finite set, then we can say

that that smallest means the one with
the least number of elements, but we
give a general definition because we
don’t want to be restricted to this case.

lowing definition.

Definition 6. A reflexive (resp. symmetric, transitive) closure of R is a
set R with the following properties.
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1. R ⊂ R ⊂ S× S.

2. R is reflexive (resp. symmetric, transitive).

3. If T is a subset of S× S such that R ⊂ T ( R, then T is not reflexive
(resp. symmetric, transitive).

It can be shown that reflexive (resp. symmetric, transitive) clo-
sures always exist, and that they are unique10. We won’t prove this 10 Think about when it makes sense to

ask for the closure of a relation with
respect to a property, and when you
can expect it to exist uniquely. For
example, it doesn’t really make sense
to ask for the anti-symmetric closure of
a relation. Do you see why?

formally, but instead we will just produce a construction of each.
Let us first tackle the reflexive closure. To make a relation reflex-

ive, we need to add in all pairs of the form {(x, x)}, where x ∈ S.
So you can convince yourself that the reflexive closure is simply the
set R ∪ {(x, x) | x ∈ S}: not only is this new relation reflexive, but
also if you take away any pair that is not already an element of R,
you get something non-reflexive. In terms of adjacency matrices,
the reflexive closure is the relation corresponding to the matrix ob-
tained by changing all diagonal entries of the original adjacency
matrix to 1.

Similarly, the symmetric closure of R is obtained by adding the
flipped pair {(b, a)} for every pair (a, b) ∈ R. This is the same thing
as taking R ∪ {(a, b) | (b, a) ∈ R}. In terms of the adjacency matrix,
we obtain this by symmetrising the adjacency matrix11: whenever 11 This is the same as taking 1

2 (A + At).
Do you see why?Aij = 1, we also set Aji = 1.

Once again, it is not so easy to describe how to construct the
transitive closure of a relation R, but it can be done by developing
some techniques for working with adjacency matrices. We will
revisit this later once we have those techniques.



Equivalence relations

Recall that a relation R on a set S is just a subset of the product
S × S. We take a short tour through the theory of equivalence re-
lations, which are extremely important in constructing all sorts of
mathematical structures.

Definition 7. A equivalence relation is one that is reflexive, symmetric,
and transitive.

Example 8. Let R be the relation on Z defined as

R = {(a, b) ∈ Z×Z | a− b is even}.

Usually, if we have an equivalence relation R on a set S, we say
that x ∼R y if (x, y) is in R. If the context is clear, we will sim-
ply say x ∼ y. The most important application is that having an
equivalence relation on a set allows us to treat an object x as "being
equivalent" to an object y if x ∼ y: the equivalence relation gives
us a new way of identifying various objects. We will capture this
identification with the notion of equivalence classes12. 12 The idea is that we can treat all

elements of one equivalence class as
being interchangeable in some sense.Definition 9. Let R be an equivalence relation on a set S. For any x ∈

S, the equivalence class of x, denoted [x], is the subset of S defined as
follows:

[x] = {y ∈ S | x ∼R y}.
In Example 8, a ∼ b if and only if they
have the same parity, so there are two
equivalence classes of R on Z, namely
[0] and [1]. Note that [0] is the same as
[2] or [−6], and [1] is the same as [−55]
or [7], but it’s traditional to use the
smallest non-negative values, which
are [0] and [1].

The special properties that an equivalence relation satisfies guar-
antees the following proposition.

Proposition 10. Let R be an equivalence relation on a set S.

1. Every element of S belongs to at least one equivalence class (its own!).

2. If x, y ∈ S such that y ∈ [x], then [x] = [y]. In other words, the set of
equivalence classes of an equivalence relation partitions13 the set S into 13 If S = S1 ∪ · · · ∪ Sn, we say that it is

a partition if Si ∩ Sj = ∅ for i 6= j. In
this case we write S = S1 t · · · t Sn, or
more concisely, S =

⊔n
i=1 Si .

disjoint subsets whose union is S.

Proof. Let x be any element of S. First note that x ∈ [x] by reflexiv-
ity, which proves the first statement. To prove the second statement,
suppose that x, y ∈ S such that y ∈ [x]. To show that [x] = [y], we
need to show that for every z ∈ S, we have z ∈ [x] if and only if
z ∈ [y].

Recall that y ∈ [x] means that x ∼R y. If z ∈ [y], then we have
z ∈ [x] by transitivity: x ∼R y and y ∼R z implies x ∼R z. On the
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other hand, since we know that y ∈ [x], we also have x ∈ [y] by
symmetry, and then by the previous argument we see that if z ∈ [x]
then z ∈ [y] by transitivity. The proof is now complete.

If y ∈ [x], we say that y is a representa-
tive of [x].Often we can uncover new structures by working with the set of

equivalence classes rather than the original set S, and it can even
give rise to new structures. An important example of this technique
is modular arithmetic.

Modular arithmetic

As an important application of equivalence classes, we briefly study
modular arithmetic. First recall the relation from Example 8. We
can observe that in the integers, the sum of two numbers is always
even. The sum of an even with an odd is odd, and the sum of two
odd numbers is always odd. But the set of even numbers has an-
other name: [0], and the set of odd numbers is also called [1] with
respect to this relation.

So we can express the above statements by writing down the
following statements instead.

1. Whenever a ∈ [0] and b ∈ [0], we have a + b ∈ [0].

2. Whenever a ∈ [0] and b ∈ [1], we have a + b ∈ [1].

3. Whenever a ∈ [1] and b ∈ [0], we have a + b ∈ [1].

4. Whenever a ∈ [1] and b ∈ [1], we have a + b ∈ [0].

Let us instead express this by defining a new addition operation on
the set14 {[0], [1]}. We will simply define this addition using the 14 Note that this set is not equal to Z!

It is also not equal to the set {0, 1}.
Instead this is a set with two elements,
which are themselves subsets of Z.

four properties above, which can be written more concisely as

[a] + [b] := [a + b] for each a, b ∈ Z.

Because we know the properties we stated above about even/odd
addition, we have effectively proven that it actually doesn’t mat-
ter whic representative we take for each equivalence class. This is
the idea behind modular arithmetic.

Exercise 11. Check that ∼d is an equiva-
lence relation.

More generally, fix a modulus d ∈ N. We say that x ∼d y if
x − y is divisible by d, which is also written as d | x − y. More
traditionally, we write x ≡ y (mod d). Note that if x ∼d y, then
there is some integer m ∈ Z such that x− y = md.

In this case, we have equivalence classes [0], [1], . . . , [d− 1]. Note
that [d] = [0] again. But if 0 ≤ e, f < d, how do we know for sure
that [e] 6= [ f ] when e 6= f ? We know this by Euclid’s algorithm,
which guarantees that for every integer n and positive integer d,
we can write a unique equation

n = qd + r, 0 ≤ r < d.

In our case, suppose that e ≥ f . Since 0 ≤ e− f < d, the equation
for e − f has to be e − f = 0 · d + (e − f ). On the other hand
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if [e] = [ f ] then we also have a valid equation that looks like
e− f = m · d + 0 for some m. Matching up the two, we see that
m = 0 and e = f is the only possibility.

Having established this, we now know that we have exactly
d different equivalence classes, namely [0], [1], . . . , [d − 1]. Of
course these can be represented by different integers. For ex-
ample, [1] = {. . . , 1− 2d, 1− d, 1, 1 + d, 1 + 2d, . . . }, so any of
these elements would do as a representative of [1]. We will write
Z/dZ = {[0], . . . , [d− 1]} to be the set of equivalence classes in
this case.

Once again we define a new addition operation, this time on Z/dZ.
The definition is the same: for any [a], [b] ∈ Z/dZ, set

[a] + [b] := [a + b].

We now have to check whether this is well-defined15 Suppose that 15 This means that if [p] = [a] and
[q] = [b], do we have [p + q] = [a + b]?
If not, we don’t have a good definition
because it depends on the specific
representative we had chosen!

[p] = [a] and [q] = [b]. Then p − a = md and q − b = nd for
some integers m, n. Adding these, we see that (p + q)− (a + b) =
(m + n)d, and so [p + q] = [a + b]. Indeed, our operation is
well-defined! This is called modular addition.

Notice that this has properties similar to the addition in the
integers, with some key differences. For example, we have the
following.

similarity [0] + [a] = [a] + [0] = [a]

similarity [a] + [b] = [b] + [a]

difference! [a] + [a] + · · ·+ [a] can equal [0] even if [a] 6= 0. For
example, [1] + [1] + [1] = [0] when d = 3.

What about multiplication? Can we define a modular multipli-
cation? Let us try. We will attempt to define a multiplication
operation by saying that

[a] · [b] should b [ab].

Again, we must check that this is well-defined. Suppose that

Exercise 12. What are some similarities
and differences between modular multipli-
cation and usual integer multiplication?

[p] = [a] and [q] = [b]. Then p − a = md and q − b = nd for
some integers m, n. Note that pq− aq = mqd and aq− ab = nad.
Adding these, we see that pq− ab = (mq + na)d, so [pq] = [ab],
and this multiplication is well-defined! This is called modular
multiplication.



Graphs

Overview

Let us recall the definitions. A (directed) graph consists of a vertex
set V and an edge set E ⊂ V × V. If (a, b) ∈ E, we also write
a → b as a directed edge. Typically we consider finite vertex sets
when we work with concrete examples. An undirected graph is
one in which the edge relation is symmetric: (a, b) ∈ E if and
only if (b, a) ∈ E. In this case, we often group the two flipped
ordered pairs {(a, b), (b, a)} and think of it as a single undirected
edge a− b. Note that in this case if a = b, then the set {(a, b), (b, a)}
just becomes {(a, a)}, so we don’t get a double loop.

Usually we consider simple graphs, that is, those where we disal-
low multiple edges and parallel loops.

TODO Draw some pictures?

Some natural questions

Graphs are a natural tool used to model various kinds of networks.
This includes, for example, road/rail/flight networks, electri-
cal/water flow networks, the "Facebook friend" graph, links be-
tween webpages, etc. Sometimes, these networks can be enhanced
by adding "edge weights", which can be used, for example, to rep-
resent the distance between the two corresponding vertices, or in
the context of flows, the "capacity" of an edge16. There are some 16 In a "normal" graph, we usually take

each edge to have weight 1.very natural questions that one can ask about graphs: either prac-
tical ones that come up in many of the above contexts, or more
theoretical ones. Here is a sample list, by no means exhaustive.

1. Is there a route from point A to point B?

2. How long is the route, and what is the shortest path?

3. How many routes are there? How long are they?

4. How much water/current/etc can flow through the network
when at full capacity?

5. Is there a good way to figure out natural "clusters" in the graph?
For example, how does Facebook know whom to suggest to you
as a potential friend?



games, graphs, and machines 13

6. Can you find an unbroken path along the edges of the graph
that goes through each vertex exactly once? (This is the Hamilto-
nian path problem.)

7. Can you find an unbroken path along the edges of the graph
that goes through each edge exactly once? (This is the Eulerian
path problem.)

8. What is the shortest circuit (path that comes back to the starting
point) that visits each vertex exactly once?

9. Is the graph planar? That is, can you draw the graph on a plane
without crossing any of the edges?

Adjacency matrix

Recall the definition of an adjacency matrix of a graph. Given a
graph (V, E), first we order the set V into a tuple (v1, . . . , vn). Then
we create an n× n matrix A such that Aij = 1 if i → j in the graph,
and Aij = 0 otherwise. In this section we will see how studying
adjacency matrices of graphs helps us make progress towards some
of the questions above.

Matrix products

Example 13. Suppose that

A =

(
1 2
0 −1

)
, B =

(
0 1 −2
2 3 4

)
Then

AB =

(
4 7 6
−2 −3 −4

)
.

First we recall matrix products. If A is an m× n matrix and B is an
n× p matrix, then we can construct a product matrix AB, defined
as follows:

(AB)ij = Ai1B1j + Ai2B2j + · · ·+ AinBnj =
n

∑
k=1

AikBkj.

Powers of the adjacency matrix
1

2 3 4

5

Figure 2: A directed graph

Consider the example directed graph shown in Figure 2. The adja-
cency matrix and its square are

A =


0 1 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 , A2 =


0 0 0 0 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Note that Ak = 0 for all k > 2. From the graph and from the matrix,
we see that the only nonzero entry in A2 is the entry at position
(1, 5), which equals 3. It arises as the sum 1 · 1 + 1 · 1 + 1 · 1, which
itself records all the possible compositions of two edges such that
the composed path goes from 1 to 5. As in the picture, there are
exactly three possibilities, and so the answer is 3.

This is a general phenomenon, and we have the following result.

Proposition 14. Let A be the adjacency matrix of a simple directed graph
(V, E). Suppose that the vertices are ordered as (v1, . . . , vn). Then the
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entry in the (i, j)th position of the kth power Ak of A counts the number
of paths of length k from the vertex vi to the vertex vj.

Proof. We proceed by induction. Indeed for k = 1, from the defini-
tion of the adjacency matrix, the (i, j)th entry equals 1 if and only if
there is an edge from i to j in the graph. Now assume that we know
the result for some k > 0, and we prove it for k + 1.

Let B = Ak, so that we can write Ak+1 = B · A. We calculate the
(i, j)th entry of Ak+1 as follows.

By the definition of matrix product, we know that this entry is
the following sum:

(Ak+1)i,j = Bi,1 · A1,j + Bi,2 · A2,j + · · ·+ Bi,n · An,j.

For each number 1 ≤ ` ≤ n, we know that Bi,` is the number
of paths of length k from vi to v`, and A`,j is the number of edges
from v` to vj. All together, the product Bi,`A`,j equals the number of
paths of length k + 1 from vi to vj that travel through the vertex v`.
Since we add over all possible vertices v`, the result (which is the
(i, j)th entry of Ak+1) is the total number of paths of length k + 1
from vi to vj.

We can also use the adjacency matrix to answer questions about
connectedness of graphs. Suppose we want to know whether there
is a path (of any length) from a vertex vi to a vertex vj. The previ-
ous proposition tells us that to find paths of a given length k, we
need to look at entries of Ak. So as long as we find a positive en-
try in the (i, j)th spot of some power of A, we know that we have
found a path. In other words, we can look at the (i, j)th entry of a
sum A + A2 + · · ·, and stop once we find a positive entry.

But how do we know when to stop adding? To answer this ques-
tion, let us analyse the shortest possible path from some vi to some
vj, under the assumption that there is at least one path.

Proposition 15. If vi and vj are vertices in the graph such that there is
at least one path from vi to vj, then the length of the shortest path from
vi to vj cannot be more than n. Further, if vi 6= vj, then the length of the
shortest path from vi to vj cannot be more than n− 1.

The Boolean product and transitive closures

In this subsection and the next, we study a couple of variant prod-
ucts on the adjacency matrix, that let us compute different things
about our graphs. The first variant is the Boolean product, which will
be used to compute transitive closures.

First we define the following binary operations on the set {0, 1}.
That is, we define the following functions {0, 1} × {0, 1} → {0, 1}.

Boolean addition This is also known as "OR" or "∨", and is defined
as follows:

0∨ 0 = 0, 0∨ 1 = 1∨ 0 = 1∨ 1 = 1.
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Boolean multiplication This is also known as "AND" or "∧", and is
defined as follows17: 17 Note that Boolean multiplication

coincides with the usual multiplication
operation restricted to the set {0, 1}.1∧ 1 = 1, 0∧ 1 = 1∧ 0 = 0∧ 0 = 0.

The Boolean matrix product is then defined on matrices with
entries in the set {0, 1}, and also outputs a matrix with entries in
the same set {0, 1}. To define the Boolean matrix product, we use
∨ instead of +, and ∧ instead of ×" respectively, as follows. Let A
be an m× n matrix and B be an n× k matrix, both with entries in
the set {0, 1}. Then the Boolean product A ∗ B is defined as follows
(entry-wise):

(A ∗ B)i,j = (Ai1 ∧ B1j) ∨ (Ai2 ∧ B2j) ∨ · · · ∨ (Ain ∧ Bnj)

=
n∨

k=1

Aik ∧ Bkj.

Now let A be the adjacency matrix of a graph. Then the (i, j)th
entry of the Boolean square of A equals 1 if and only if there exists
a path of length two from i to j in the graph. This is because the
(i, j)th entry is a Boolean sum (∨) of several entries, and the `th
such entry equals 1 if and only if there is an edge from i to ` and
also an edge from ` to j. The Boolean sum of all of these equals 1 if
and only if at least one of the entries is equal to 1, which is true if
and only if there is some path of length two from i to j. Extending
this reasoning to a k-fold product, we obtain the following result.
The proof is similar to that of Proposition 14 and so we omit it.

Proposition 16. Let A be the adjacency matrix of a simple directed graph
(V, E). Suppose that the vertices are ordered as (v1, . . . , vn). Then the
entry in the (i, j)th position of the kth Boolean power A∗k of A equals 1 if
there is a path of length k from the vertex vi to the vertex vj, and equals 0
otherwise.

Weighted graphs and weighted adjacency matrices

Now suppose that G = (V, E) is a weighted graph. This means
that each edge has an associated weight, which is usually a non-
negative real number. Mathematically, we can write this as a func-
tion w : E → R, sending each edge to a real number. In practical ap-
plications, graphs often have edge weights, for example the length
of a road or the cost of going through a toll bridge, and weighted
graphs are models of these situations. We would like to use ad-
jacency matrices to compute the weight of the least-cost (that is,
smallest weight) path between any pair of vertices. We can achieve
this by writing down a weighted adjacency matrix, and by computing
a new product on it. The weighted adjacency matrix simply lists
the weight of each edge. The diagonal entries are all 0 because one
can get from any vertex to itself with zero cost (by not moving). All
entries (i, j) where (i, j) is not an edge are set to ∞18. 18 We use the symbol ∞ as a place-

holder for an extremely large number:
for any real number r in our calcu-
lations, we will set r + ∞ = ∞ and
min{r, ∞} = r.
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Definition 17. Let G = (V, E) be a directed graph with weight function
w : E → R. Suppose that the vertices are ordered as (v1, . . . , vn). The
weighted adjacency matrix of G is an n× n matrix W, defined as follows:

Wij =


0, if i = j,

w((i, j)), if (i, j) ∈ E,

∞, otherwise.

Example 18. Consider the weighted
graph shown below.

1

2

5 3

2

4

3

1

Its weighted adjacency matrix is

W =


0 5 2 ∞
∞ 0 ∞ 3
∞ 1 0 ∞
∞ ∞ ∞ 0


.

Note that this adjacency matrix is set up in a way such that the
(i, j)th entry shows the minimum-cost path of length at most 1 (that
is, either one edge or no edge, in the case that i = j) from i to j. To
find the minimum-cost path of length at most 2 from i to j, we need
to iterate over all possible intermediate steps i → ` → j, add the
edge weights of i → ` and ` → k, and then take the minimum.
This operation is extremely similar to the standard matrix product,
except that instead of multiplying the (i, `)th entry with the (`, j)th
entry we are adding them, and instead of adding over all possibili-
ties we are taking the minimum over all possibilities. We define this
"min-plus" matrix product as follows.

Definition 19. Let A be an m× n matrix and B be an n× k matrix, such
that the entries of A and B are either real numbers or ∞. The "min-plus"
product of A and B, denoted A� B, is defined as follows (entry-wise):

(A� B)i,j = min{(Ai1 + B1j), (Ai2 + B2j), . . . , (Ain + Bnj)}.

Now let W be the weighted adjacency matrix of a weighted
graph. Note that the (i, j)th entry of W �W is precisely the weight
of the minimum-weight path from i to j that has at most two edges.
Generalising this, we have the following proposition. The proof is
similar to that of Proposition 14, and is omitted.

Example 20. For the graph in Exam-
ple 18, the second and third min-plus
powers of the weighted adjacency matrix
are:

W�2 =


0 3 2 8
∞ 0 ∞ 3
∞ 1 0 4
∞ ∞ ∞ 0

 ,

and

W�3 =


0 3 2 6
∞ 0 ∞ 3
∞ 1 0 4
∞ ∞ ∞ 0

 .

Indeed, the entries of the min-plus cube
give the minimum weights of possible
paths between any pairs of vertices in the
graph.

Proposition 21. Let W be the weighted adjacency matrix of a weighted
graph with n vertices.

1. The (i, j)th entry of W�k is the weight of the minimum-weight path
from i to j that has at most k edges.

2. If all the edge weights are non-negative, then the (i, j)th entry of
W�(n−1) is the weight of the minimum-weight path (with any num-
ber of edges) from i to j.

The technique of repeated squaring

This section is an aside. We discuss the method of repeated
squaring to quickly find powers of a matrix (or indeed, to quickly
find powers in general). This method works for any associative
product operation, including the standard matrix product, the
Boolean matrix product, and the min-plus matrix product. For
concreteness, we discuss it for the standard matrix product.

Let A be a square matrix. The naive method to compute a power
of A, for example A8, would be to multiply A serially with itself



games, graphs, and machines 17

8 times. This consist of 7 matrix product operations. However,
there is a quicker method: if we first find and save A2, then we
can multiply that with itself to obtain and save A4, and finally
multiply that with itself to get A8. In total, that corresponds to only
3 matrix product operations! This is considerably faster than serial
multiplication.

But what if we don’t have an even number, or a power of two
as the power we need to compute? Suppose we are trying to com-
pute An where n is not necessarily a power of two. In this case, we
simply square the matrix repeatedly, saving the results, until we
reach a power less than or equal to n. Then we write n as a sum
of distinct powers of two19, and then multiply together the corre- 19 Writing a positive integer n as the

sum of distinct powers of two is also
called binary writing. There are several
ways to obtain it. For example, we
can follow the following recursive
algorithm: if n is even, we write it
as 2m, and if n is odd, we write it as
2m + 1. Repeating the process on the
m obtained until we reach 1, we obtain
an expression which expands to a sum
of distinct powers of two. For example,

7 = 2(3) + 1 = 2(2(1) + 1) + 1

= 4 + 2 + 1.

sponding powers of A to get the final result. Here is an example.

Example 22. Suppose that n = 19. In this case, we remember M0 = A,
M1 = A2, M2 = M2

1 = A4, M3 = A8, and M4 = A16. Finally, note that
19 = 16 + 2 + 1 = 24 + 21 + 20, and so

A19 = M4 ·M1 ·M0.

This process corresponds to a total of 6 matrix product operations (four
squarings and two multiplications), as opposed to the 18 product opera-
tions required for serial multiplication.

Graph colouring

TODO The four-colour problem

TODO The chromatic function

TODO Hamiltonian paths and circuits



Partial orders

In this section we return to another important kind of relation,
called partial orders. These are entirely different in flavour from
equivalence relations, and are very useful to formalise. Once we
cover the preliminaries, we will also see a few applications of the
theory of partial orders.

Definition 23. A relation R on a set S is a partial ordering or partial
order if it is reflexive, anti-symmetric, and transitive.

Note that a partially ordered set S
need not be a set of numbers, so the
curly inequality sign denoting the
partial order relation is not necessarily
a numerical inequality.

A set equipped with a partial order relation is called a partially
ordered set. If R is a partial order on S, we usually write x � y if
(x, y) ∈ R.

Here is an example of a non-numerical partial ordering.

Example 24. Suppose that S is any set, and let P(S) be the power set of
S, so that the elements of P(S) are all the subsets of S. We can define a
partial ordering on P(S) by setting A � B whenever A ⊆ B. Let us check
the three properties.

1. This relation is reflexive because any set A is a subset of itself.

2. It is anti-symmetric because if A ⊆ B and B ⊆ A both hold, then all
elements of A are elements of B and all elements of B are elements of A,
and so A and B must be equal.

3. It is transitive because whenever A ⊆ B and B ⊆ C, we also have
A ⊆ C.

Suppose that � is a partial order on some set S. Let � be a partial order on a set S. We
say that this partial order is total if any
two elements a, b of S are comparable.
That is, we either have a � b or b � a.

Exercise 25. Find examples to show
that the partial order of Example 24 is not
usually a total order.

Definition 26. We say that two elements a, b ∈ S are comparable if they
are related in some order, that is, either a � b or b � a.

Exercise 27. Check that the examples
given satisfy the properties of being partial
orders, and come up with some more of
your own.

Here are a couple of other important examples of partial order-
ings.

• The usual inequality ordering on N, Z, Q, or R, where a � b
whenever a ≤ b as numbers. This is a total order because any
two numbers are comparable.

• The division ordering on N, where a � b whenever a | b, that is,
a is a factor of b. This is not a total order, because (for example)
12 and 15 are incomparable.
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Hasse diagrams

A Hasse diagram is a useful way to visualise a partial order. It is
similar to drawing the graph of the partial order, but much less
cluttered. Let us consider the example in Figure 3.

a

b

c d

Figure 3: The graph of a partial order
relation

This is the graph of the relation, which contains all the informa-
tion about the relation. But it is also highly redundant: we already
know that partial order relations are reflexive, so the self-loops are
redundant. Similarly, we alreday know that the relation is transi-
tive, so any "shortcuts", such as the one from the node a to the node
d, are redundant.

So to convert the graph of a partial order relation into a Hasse
diagram, we do the following:

• remove all self-loops,

• remove all edges implied by transitivity, and

• implicitly order all edges from bottom to top to get rid of the
arrowheads.

The result can be seen in ??.
Similarly, to convert from a Hasse diagram to the graph of the

relation, we do the following:

• add arrowheads going from the bottom to the top,

• add all edges in the transitive closure, and

• add self-loops at each vertex.

TODO Upper and lower bounds

Incidence algebra

In this section we introduce a useful algebraic tool to work with
partial orders. First we introduce some definitions. Let (P,�) be a
partially ordered set. For x � y in P, the interval (or more specifi-
cally, the closed interval) [x, y] is defined as follows:

[x, y] = {z ∈ P | x � z � y}.

We can also define open and half open intervals as follows.

(x, y) = {z ∈ P | x ≺ z ≺ y},
(x, y] = {z ∈ P | x ≺ z � y},
[x, y) = {z ∈ P | x � z ≺ y}.

Let I(P) be the set of all non-empty closed intervals of P.

Definition 28. The incidence algebra of the poset P is defined as the set
of all functions from I(P) to R:

AP = { f : I(P)→ R}.
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Note that to specify an element of AP,
we need to specify its value on every
closed interval [x, y] of P.Example 29. We note the following three examples of elements of AP.

1. Set f0 to be the function that sends every closed interval to 0:

f0([x, y]) = 0 ∀x � y.

2. Set δ to be the Kronecker delta function:

δ([x, y]) =

1, x = y,

0, x 6= y
.

3. Set ζ to be the function that sends every closed interval to 1:

ζ([x, y]) = 1 ∀x � y.

The incidence algebra may not seem all that interesting as a set.
But it has several nice operations on it, which we now explore.

Addition If f , g ∈ AP, we define their sum f + g as the following
element of AP:

( f + g)([x, y]) = f ([x, y]) + g([x, y]).

Scalar multiplication If r ∈ R, and f ∈ AP we define their scalar
product r f as the following element20 of AP: 20 The · symbol represents usual

multiplication of real numbers.
(r f )([x, y]) = r · f ([x, y]).

Convolution product If f , g ∈ AP, we define their convolution product
f ∗ g as the following element of AP:

( f ∗ g)([x, y]) = ∑
x�z�y

f ([x, z]) · g([z, y]).

It is clear that the function f0 is the additive identity for the
addition operation. That is, for any other function f ∈ A(P), we
have

f + f0 = f0 + f = f .

The following proposition shows that the function δ is a multi-
plicative identity for the convolution product21. 21 In particular, since multiplicative

identities are unique, the zeta function
is not the multiplicative identity for the
convolution product!

Proposition 30. Let (P,�) be any finite poset, and let f be an element of
A(P). Then

( f ∗ δ) = (δ ∗ f ) = f .

Exercise 31. Prove that the multiplicative
identity for the convolution product is
unique. That is, if there is some function
δ′ such that f ∗ δ′ = δ′ ∗ f = f for every
function f , then δ = δ′.

Proof. This can be verified by direct calculation, as follows:

( f ∗ δ)([x, y]) = ∑
x�z�y

f ([x, z])δ([z, y]).

Note that δ([z, y]) = 0 unless z = y. So the only term that survives
in the summation is the one where z = y. So we have

( f ∗ δ)([x, y]) = f ([x, y])δ([y, y]) = f ([x, y]).

Since this is true no matter what interval [x, y] we chose, we see that
f ∗ δ = f .

A similar calculation shows that δ ∗ f = f .
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Functions on posets and one-sided convolution

Let (P,�) be any finite poset. A function on the poset P is simply a
function

p : P→ R.

If f ∈ AP and p : P → R, then we can define two one-sided
convolutions, f ∗ p and p ∗ f . Both of these will be new functions on
P. The definitions are as follows22: 22 Remember that elements of A(P)

take in intervals as inputs, and func-
tions on posets take elements of the
poset as inputs.

• ( f ∗ p)(x) = ∑x�z f ([x, z]) · p(z),

• (p ∗ f )(x) = ∑z�x p(z) · f ([z, x]).

The matrix representation of the incidence algebra

The convolution product on AP does not seem very intuitive at first
glance, and it is not clear why it might be useful. To understand
the motivation behind this, we look at the matrix representation of
AP. First, it will be useful to sort the elements of P in a nice way,
in order to be able to write down matrices such as the adjacency
matrix. Since P already has a partial order on it, it is most natural
to sort the elements of P going "bottom to top along its Hasse dia-
gram". More formally, this means that we should sort the elements
so that whenever x � y, we put x before y in our total sorting. This
is called a topological sorting of P. In a topological sorting x1, . . . , xn,

having i ≤ j does not necessarily imply
that xi � xj! However if i ≤ j and
xi � xj, then it must be the case that xi
and xj are incomparable.

Definition 32. Let (P,�) be a poset. An ordering x1, . . . , xn of the
elements of P is called a topological sorting if whenever xi � xj, we have
i ≤ j.

Note that P may have several different valid topological sort-
ings! To write down the matrix representation of AP, fix a sorting
x1, . . . , xn on P. The matrix representation depends on the chosen
sorting, and looks particularly nice if we choose a topological sort-
ing, but this is not necessary.

Exercise 33. A square matrix is called
upper-triangular if every entry below the
main diagonal is zero. Check that if the
chosen sorting x1, . . . , xn of the elements
of P is a topological sorting, then for any
f ∈ A(P), the corresponding matrix M f
is upper-triangular.

Definition 34. Let f ∈ AP. The matrix corresponding to f (with respect
to the chosen sorting) is defined to be an n × n matrix M f , with the
following entries:

(M f )i,j =

 f ([xi, xj]), xi � xj

0, otherwise.

Similarly, we have a vector associated to any function on a poset.

Definition 35. Let p : P → R. The vector corresponding to p in the
chosen sorting is defined as follows:

vp =


p(x1)

...
p(xn)

 .



22 asilata bapat

We also often consider the transpose of this vector:

vt
p =

(
p(x1) · · · p(xn)

)
.

Note that if P has n elements, then the
matrix associated to any element of the
incidence algebra is an n× n matrix.
The vector vp associated to a function
p on the poset is an n× 1 matrix (or
column vector), and the transpose
vector vt

p is a 1 × n matrix (or row
vector).

It turns out that the three operations we defined on the inci-
dence algebra translate into already-familiar operations on matrices.
The next theorem shows that addition and convolution product
of elements in the incidence algebra becomes addition and matrix
product of the corresponding matrices. Similarly, one-sided con-
volution turns into a matrix-vector product of the corresponding
matrix and vector.

Exercise 36. Check that the operations
described in the theorem make sense in
terms of numerics: what will be the sizes of
the matrices obtained from the operations
on the right hand side of each equation in
the theorem?

Theorem 37. Let f , g ∈ A(P), and let p : P → A(P). Then the
following hold.

1. M f+g = M f + Mg.

2. M f ∗g = M f ·Mg.

3. v f ∗p = M f · vp.

4. vt
p∗ f = vt

p ·M f .

TODO Prove theorem about matrix representations

It is easy to check that the matrix corresponding to the δ function,
Mδ, is just the identity matrix I. This is consistent with the fact that
f ∗ δ = δ ∗ f = f for every f ∈ A(P).

Invertibility and the Möbius function

Recall that the element δ ∈ A(P) is the multiplicative identity with
respect to the convolution product.23 23 This means that for every f ∈ A(P),

we have f ∗ δ = f = δ ∗ f .

Definition 38. We say that an element f ∈ A(P) is invertible if it has
a multiplicative inverse with respect to convolution. That is, if there exists
some g ∈ A(P) such that

f ∗ g = δ.

If the conditions of the definition hold, we automatically have the
following extra properties.

Proposition 39. Suppose that f ∈ A(P) is invertible, and that g ∈
A(P) is such that f ∗ g = δ. Then we have the following.

1. g is also a "left inverse" of f . That is, we have g ∗ f = δ.

2. g is the unique element with this property. That is, if g′ ∈ A(P) such
that f ∗ g′ = δ, then g′ = g.

TODO Prove the proposition above.
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Continued

In view of the previous proposition, we will say that if f is invert-
ible, then the unique g that satisfies the equivalent conditions of the
proposition is called the inverse of f , and is denoted f−1.

Since the matrix representation of the incidence algebra pre-
serves multiplication, it also preserves inverses.

Proposition 40. If f ∈ A(P) is invertible, then

M f−1 = (M f )
−1.

Proof. We know that f ∗ f−1 = δ, and we also know that Mδ = I,
the identity matrix. So we have by Theorem 37 that

M f−1 ·M f = Mδ = I.

This shows that the matrix M f is invertible as a matrix, and by
multiplying both sides on the right by (M f )

−1 that

M f−1 = (M f )
−1.

Therefore M f is invertible, and its inverse is simply M f−1 .

In fact, the other direction is also true! (Although much less
obvious.) We need two lemmas from linear algebra, which you can
take as black boxes if you are not familiar with linear algebra.

Lemma 41. An upper-triangular square matrix M is invertible if and
only if each diagonal entry is non-zero.

Proof. We won’t prove this here; this is standard from linear algebra
by either Gaussian elimination or computing the determinant.

Lemma 42. Suppose that f ∈ A(P). Then the invertibility of M f is
independent of the sorting chosen on P. That is, if M f is invertible with
respect to one sorting of P, then it is invertible respect to every sorting of
P.

Proof. Changing the ordering of the elements of P is a (particularly
easy) change of basis on the space Rn, and it conjugates M f by a
permutation matrix. Consequently, if A and B are matrices of f
with respect to two different sortings, then they are similar matri-
ces. So one is invertible if and only if the other one is.

Now we are ready to state and prove the other direction.

Proposition 43. Suppose that f ∈ A(P) such that M f is an invertible
matrix. Then f is invertible as an element of A(P), and M f−1 = (M f )

−1.

Proof. Fix some f ∈ A(P) such that M f is invertible as a matrix.
For simplicity, we can assume by Lemma 42 that the chosen sorting
on P is a topological sorting, so that M f is upper-triangular.

For simplicity, we write M = M f . Let N = M−1. We now have to
show the following.
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1. We have to show that if x 6� y, then N(x,y) = 0.

2. We also have to show that if we define g ∈ A(P) via g([x, y]) =
N(x,y) for every x � y, then g is the inverse of f under the convo-
lution product.

We start by showing the first statement. Suppose (for contradic-
tion) that x 6� y, and that N(x,y) 6= 0. Fix y and by enlarging x if
necessary, suppose that x is the maximal element with this prop-
erty. Let us compute (M · N)(x,y) = I(x,y) = 0.

(M · N)(x,y) = ∑
z∈P

M(x,z) · N(z,y).

The only possible non-zero terms in the sum arise from z such that
x � z, otherwise Mx,z = 0.

On the other hand, x is the maximal element such that N(x,y) 6=
0. So for all values of z such that x ≺ z, we have N(z,y) = 0. This
shows that

(M · N)(x,y) = M(x,x) · N(x,y) = 0.

Since we had chosen to represent M in a topological sorting of P,
the matrix M is upper-triangular (and invertible). By Lemma 41, we
have M(x,x) 6= 0. This shows that N(x,y) 6= 0, which is a contradic-
tion.

Now we prove the second statement. Consider the same assump-
tions as before: f ∈ A(P) such that M = M f is invertible, and set
N = M−1. Define a new function g ∈ A(P) as follows:

g([x, y]) = N(x,y),

for every x � y. We now check explicitly that g is the inverse of f
under the convolution product.

( f ∗ g)([x, y]) = ∑
x�z�y

f ([x, z])g([z, y]) = ∑
x�z�y

M(x,z)N(z,y).

By the previous proof, we know that if z does not satisfy x � z � y,
then either M(x,z) = 0 or N(z,y) = 0, and so the product M(x,z)N(z,y)
is zero. Therefore we have

( f ∗ g)([x, y]) = ∑
z∈P

M(x,z)N(z,y) = (M · N)(x,y) = δ([x, y]).

This calculation proves that g = f−1.

Proposition 40 and Proposition 43 imply that checking whether
an element f ∈ A(P) is invertible is equivalent to checking whether
its corresponding matrix M f is invertible as a matrix. We now have
a particularly simple characterisation of invertibility, as follows.

Proposition 44. An element f ∈ A(P) of the incidence algebra is
invertible if and only if f ([x, x]) 6= 0 for every x ∈ P.

Proof. The previous propositions prove that f is invertible if and
only if M f is invertible as a matrix. Without loss of generality (in-
voking Lemma 42), assume that the sorting on P is topological. This
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means that M f is upper-triangular, and by Lemma 41, this is true if
and only if (M f )(x,x) 6= 0. By construction, (M f )(x,x) = f ([x, x]). All
together, we see that f is invertible if and only if f ([x, x]) 6= 0 for
every x ∈ P.



Regular expressions and finite automata

In this chapter, we will study regular expressions, regular lan-
guages, and finite automata. The aim of the chapter is to build up
tools for "pattern-matching" strings over a fixed alphabet, and to
isolate subsets of strings that match certain patterns.

Regular expressions

A regular expression is a systematic formula that specifies certain
strings of a given alphabet. We first need to define what we mean
by alphabet and string, and some basic constructions.

Definition 45. An alphabet Σ is a finite set of symbols, called the letters
of Σ. A string or a word is a finite ordered list of elements of Σ, written
without spaces or punctuation. The length of a word is the number of
letters in the word.24 24 The unique empty word is also

allowed, and is denoted ε. For this
reason we usually assume that ε is not
a symbol in Σ.

A commonly used alphabet is Σ = {0, 1}. In that case, examples
of strings or words in this alphabet are 10, 00, 1110, 0, 1, and ε.

If Σ is a fixed alphabet, then we denote by Σ∗ the set of all
strings, including ε.

Exercise 46. Check that if Σ = ∅ then
Σ∗ = {ε}, but otherwise Σ∗ is infinite.

Definition 47. Fix an alphabet Σ. A language L on Σ is any subset of
Σ∗.

Unless otherwise specified, we will use the alphabet Σ = {0, 1}
as our default alphabet.

Basic constructions with strings

Fix an alphabet Σ. We begin by listing some basic constructions on
languages on Σ and strings in Σ.

Concatenation (on strings) Let v = a1 . . . ak and w = b1 . . . bl be
strings, with ai, bj ∈ Σ for every i and j. The concatenation of v
and w is the string

vw = a1 . . . akb1 . . . bl .

Concatenation (on languages) Let L1, L2 ⊆ Σ∗ be languages. The
concatenation of L1 and L2 is a new language on Σ, denoted by
L1 ◦ L2 and defined as follows.

L1 ◦ L2 = {vw | v ∈ L1, w ∈ L2}.
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Union (of languages) If L1, L2 ⊆ Σ∗ are languages, then their union
L1 ∪ L2 is just the set union. So

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

Star (of a language) Let L ⊆ Σ∗ be a language. Then the star of L,
denoted L∗, consists of any number of concatenations of words
in L. That is,

L∗ = {w1w2 . . . wk | k ≥ 0 and wi ∈ L for each i}.

Example 48. 1. If L = ∅ then L∗ =
{ε}.Lexicographic order (dictionary order)

Suppose that we have ordered the elements of Σ. Then Σ∗ (and any
other language on Σ) inherits a total order, known as the lexico-
graphic order. In this order, we can compare two words v and w
using the following steps.

1. If v and w have unequal lengths, then the shorter word is said to
be less than or equal to the longer word.

2. If v and w have the same length n, then we can write them as

v = a1 · · · an and w = b1 · · · bn,

where ai, bj are letters. Then we compare letter by letter starting
from 1 to n. If v 6= w then at least one position i must have ai 6= bi.
Let i be the smallest number for which the letters ai and bi differ. If
ai < bi in the order on Σ, we say v < w. Otherwise if bi < ai, we say
w < v.

Example 49. Assume we use the
order (0, 1) on Σ = {0, 1}.

1. The word ε is shorter than every
other word, so appears first in the
lexicographic order on Σ∗.

2. The word 11 appears before 011 (or any
other word of three or more letters).

3. The word 01 appears before 11 but
after 00.

TODO Regular expression syntax and matching

We are now ready to define regular expressions. A regular expres-
sion should be thought of as a particular way to specify a pattern,
that can "match" zero or more strings in a given language. Regular
expressions are built out of three basic patterns and three "opera-
tors" that make bigger patterns using smaller ones.

Definition 50. Fix an alphabet Σ. A word r written using the letters
of Σ, together with the symbols ∗ and |, is a valid regular expression if it
satisfies one of the following.25 25 Additionally, we are also allowed to

parenthesise subexpressions to avoid
ambiguity. We assume that Σ does not
contain any of the symbols "(", ")", "|",
"∗", or "∅".

1. r = ∅

2. r = ε

3. r = a for some a ∈ Σ

4. r = r1r2 for two valid regular expressions r1 and r2

5. r = r1|r2 for two valid regular expressions r1 and r2

6. r = s∗ for a valid regular expression s.
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We now discuss what it means for a string to "match" a regular
expression.

Definition 51. Let Σ be an alphabet and let r be a regular expression on
Σ. Let w ∈ Σ∗ be any word. We say that w matches r if the following
hold.

1. r 6= ∅, because no word matches the regular expression ∅.

2. If r = ε or r = a for some a ∈ Σ, then w = r.

3. If r = r1r2 then there is at least one way to break up w into w = v1v2,
such that v1 matches r1 and v2 matches r2.

4. If r = r1|r2 then either w matches r1 or w matches r2 (or it matches
both).

5. If r = s∗, then w can be broken up as a concatenation of zero or more
subwords, w = v1 . . . vk, such that each vi matches s.

Deterministic finite automata

A finite automaton is an abstract machine that performs calculations
according to certain rules. We will begin by discussing determinis-
tic finite automata, and discuss their relationship to regular expres-
sions.

Definition 52. Fix an alphabet Σ. A deterministic finite automaton for Σ
is described by the following pieces of data.

1. A (usually finite) set of states, usually denoted Q.

2. A start state26, usually denoted q0 ∈ Q. 26 The start state is always unique.

3. A set of accept states A ⊆ Q.27 27 The set of accept states can be any
subset of Q, including the empty set.
Changing the set of accept states while
keeping everything else the same
typically changes the results of the
calculation drastically.

4. A transition function

δ : Q× Σ→ Q.

Example 53. Here is an example of a
finite automaton.

q0start

q1

q2

0

1

0,1

1

0

The definition is not very illuminating. It is often much clearer
to draw the state diagram of a finite automaton, as shown in Exam-
ple 53. In this example, we can decode the formal data of the DFA
as follows.

1. The set of states is Q = {q0, q1, q2}.

2. The start state is q0.

3. The set of accept states is A = {q0, q1}.

4. The transition function can be represented as a table as follows.

Input state Letter Output state
q0 0 q1

q0 1 q2

q1 0 q1

q1 1 q1

q2 0 q1

q2 1 q2
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TODO Nondeterministic finite automata

TODO Converting regular expressions to finite automata

TODO Converting finite automata to regular expressions

TODO The pumping lemma



TODO Combinatorial games

We begin the course with some games. The theory of games is a
rich subject that can be used to model problems in logic, computer
science, economics, and social science, depending on the rules you
impose on your games. We will focus on impartial combinatorial
games.

An impartial combinatorial game is usually played with two
players and satisfies the following conditions.

1. There is a (usually finite) set of possible game states.

2. There are rules that describe the possible moves from a given
game state to other game states.

3. The game is impartial, which means that the rules to go from one
game state to the next do not depend on which player is about to
make the move28. 28 Contrast this to a game such as

chess, in which one player may only
move the white pieces and the other
player may only move the black pieces.

4. The players alternate making moves to move from one game
state to the next.

5. The first player to be unable to make a move loses the game29. 29 This is called normal play. In the
variant called misère play, the first
player unable to make a move wins the
game.

6. There is complete information (the entire game state is known to
both players at all times).

7. There are no chance moves.

Easy examples

Strategic and Grundy labelling

Nim



TODO Matrix games

Matrices
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