Contents

Some foundations 3
 Sets 3
 Relations 4
 Functions 4
 Graphs 5
 Properties of relations 6

Equivalence relations 8
 Modular arithmetic 9

Graphs 11
 Overview 11
 Adjacency matrix 12
 Graph colouring 16

Partial orders 17
 Hasse diagrams 18
 Incidence algebra 18
 The matrix representation of the incidence algebra 19
Some foundations

We begin by briefly introducing some language to talk about the objects we will encounter in this course. We will revisit this foundational material several times throughout the course in several contexts.

Sets

Informally, a set is an unordered collection of objects with no repetitions. This is the most basic object usually used to discuss almost every construction in mathematics. If T is a set and x is any object, we have the following dichotomy\(^1\): either x is an element of T, denoted $x \in T$, or x is not an element of T, denoted $x \notin T$. Two sets are equal if and only if they have the same elements. That is, every element of the first set is an element of the second set, and vice versa.

The Zermelo–Fraenkel axioms\(^2\) can be used to develop this theory more formally, but we will not go into the details in this course.

Sets are often denoted by capital letters such as S, T, and potential elements as small letters x, y.\(^3\) If we are listing all the elements of a set, we put them in curly braces, for example $\{1, 2, 3, 4\}$. We can also specify a set by taking all elements of another set that satisfy a particular property, for example $\{x \in \mathbb{N} \mid x \text{ is even}\}$.

A set S is a subset of a set T, denoted $S \subseteq T$, if every element of S is also an element of T. A set U is a superset of a set T, denoted $U \supset T$, if every element of T is also an element of U. There is a unique set that contains no elements. It is called the empty set and is denoted \emptyset. The empty set is vacuously\(^4\) a subset of every set.

Here are some things we can do with sets.

Unions The union of S and T, denoted $S \cup T$, is the set such that each element of $S \cup T$ is either an element of S or of T, or both.

Intersections The intersection of S and T, denoted $S \cap T$, is the set such that each element of $S \cap T$ is both an element of S and an element of T.

\(^1\) A situation in which exactly one of two possible options is true.

\(^2\) Historical remarks and something about ZFC?

\(^3\) This is just a convention. In fact, sets are often elements of other sets, so there is no clear distinction between sets and potential elements.

\(^4\) We say that a statement of type "if . . . then . . .", or equivalently "for every . . . we have . . ." is vacuously true if nothing satisfies the "if" or "for every" condition.

Example 1.

1. $\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$.
2. $\{1, 2\} \cap \{2, 3\} = \{2\}$.

Wednesday 29 July 2020.
Power set The power set of S, denoted $\mathcal{P}(S)$, is the set whose elements are all the subsets of S.

Cartesian products The Cartesian product of S and T, denoted $S \times T$, is the set whose elements are ordered pairs (x, y), where x runs over all the elements of S, and y runs over all the elements of T. Note that if one of the two sets is empty, then the Cartesian product is also empty.

Relations

Informally, a relation is a specification that links objects of one set and objects of another set. If x is related to y under a relation R, we say that the ordered pair (x, y) satisfies R. For example, we may consider a relation called is-factor-of, on pairs of natural numbers, which specifies that (x, y) satisfies is-factor-of if and only if x is a factor of y. In this case, $(1, 3), (3, 27), (4, 24)$ are all examples of ordered pairs that satisfy the relation is-factor-of.

To model this mathematically, we formally define a relation as a subset $R \subset S \times T$, where S and T are two sets. In this case, the elements of R are precisely the ordered pairs that we think of as satisfying the relation R. In the previous example, we have $S = T = \mathbb{N}$. If we want R to model the relation is-factor-of, then we take R to be the subset of $\mathbb{N} \times \mathbb{N}$ consisting of exactly the pairs (x, y) where x is a factor of y.

As in the previous example, we often want S and T to be the same set. In this case, we say that a subset $R \subset S \times S$ is a (binary) relation on S.

Functions

Informally, a function is a rule that can be used to find the output value given a certain input value. This can be formally expressed using relations, as follows. Let $R \subset S \times T$ be a relation. We say that R is a function if whenever $(s, t) \in R$ and $(s, u) \in R$, we have $t = u$.

In other words, any first coordinate has at most one possible second coordinate. In this case, we often write $t = R(s)$ or often $t = f(s)$. We also have the following definitions.

Domain The domain of this function is the set

$$\{x \in S \mid (x, y) \in R \text{ for some } y \in T\}.$$

Codomain (or range) The codomain of this function is the set

$$\{y \in T \mid (x, y) \in R \text{ for some } x \in S\}.$$

Example 2.

1. $\mathcal{P}((1,2)) = \emptyset, \{1\}, \{2\}, \{1, 2\}$.
2. $\{1, 2\} \times \{2, 3\} = \{(1, 2), (1, 3), (2, 2), (2, 3)\}$.
3. $\{1, 2\} \times \emptyset = \emptyset$.

Example 3.

1. The relation $\{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a + b \text{ is even}\}$ is not a function because, for example, $(2, 4)$ and $(2, 0)$ are both in it.
2. The relation $\{(a, b) \in \mathbb{N} \times \mathbb{N} \mid b = a^2\}$ is a function.
If S' is the domain and T' is the range, we usually say that f is a function from S' to T', written $f : S' \to T'$.

Graphs

Graphs provide an extremely useful way to organise information about relations. For the moment we use them as powerful visual aids, but we will see later that graphs also lend themselves well to computational tools.

A directed graph consists of a vertex set V and an edge set E. We require that the edge set E is a relation on V, that is, $E \subset V \times V$. We will write this graph as (V, E). Visually, we draw the vertices as nodes and an edge (v, w) as an arrow from v to w.

We think of undirected graph as a directed graph with the extra property that the edge relation E is symmetric. That is, $(v, w) \in E$ if and only if $(w, v) \in E$. In this case, we draw the vertices as nodes, and we draw a single segment joining v and w for every corresponding pair of edges (v, w) and (w, v).

Representing a relation on a set as a graph

Note that the definition of a graph is very similar to the definition of a relation on a single set — in fact, a directed graph is just another way of looking at a relation on a set. More precisely, let R be a relation on a set S. Then we can construct a directed graph whose vertex set is S and whose edge set is R. This point of view is useful in certain situations, as we will see later.

The adjacency matrix of a graph

Recall that a matrix is a rectangular array, usually filled with numbers. An $m \times n$ matrix M has m rows (numbered 1 through m) and n columns (numbered 1 through n). The entry in the ith row and jth column is denoted M_{ij}.

It is extremely useful to encode the data of a graph into a matrix, called an adjacency matrix. Suppose (V, E) is a graph. Choose an ordering on the elements of V, say the ordered tuple (v_1, \ldots, v_n). We construct the adjacency matrix as an $n \times n$ matrix A, such that

\[
A_{ij} = \begin{cases}
1, & (i, j) \in E, \\
0, & (i, j) \notin E.
\end{cases}
\]

The adjacency matrix is a matrix that only contains the elements 0 and 1. It encodes the entire information contained in the original
graph, in a way that is highly adapted to calculations — we will see more of this soon.

Note that changing the ordering on the elements of V produces a different-looking adjacency matrix. It is related to the original adjacency matrix by a series of simultaneous swaps of corresponding row and column numbers. For example, the adjacency matrix given by the ordering $(v_2, v_1, v_3, \ldots, v_n)$ can be obtained from A by swapping rows 1 and 2 and also swapping columns 1 and 2.

Properties of relations

Sometimes, relations (on a single set) satisfy further special properties. Here are some common ones. Remember that a relation R is simply a subset of $S \times S$ for some set S. So the following properties are about R as a whole, as a subset of $S \times S$.

Reflexivity A relation R is reflexive if $(x, x) \in R$ for each $x \in S$.

Symmetry A relation R is symmetric if whenever we have $(x, y) \in R$, we also have $(y, x) \in R$.

Anti-symmetry A relation R is anti-symmetric if having both $(x, y) \in R$ and $(y, x) \in R$ implies that $x = y$.

Transitivity A relation R is transitive if whenever $(x, y) \in R$ and $(y, z) \in R$, we also have $(x, z) \in R$.

Note that the properties of being symmetric and anti-symmetric are almost but not quite complementary to each other: if a relation is both symmetric and anti-symmetric, it means that only pairs of the form (x, x) can be in the relation. However, not all pairs of this form have to satisfy the relation (i.e. the relation need not be reflexive).

The adjacency matrix can be helpful in order to read off properties about the relation. For example, since a reflexive relation has all possible pairs (x, x) in it, all diagonal entries A_{ii} of the adjacency matrix must equal 1, and conversely if $A_{ii} = 1$ for each i, then the relation is reflexive.

Similarly, a relation is symmetric if $A_{ij} = A_{ji}$ for each i, j. That is, if the adjacency matrix is symmetric. A relation is anti-symmetric if whenever $i \neq j$ and $A_{ij} = 1$, we have $A_{ji} = 0$.

What does it mean in terms of the adjacency matrix if a relation is transitive? The answer to this question is slightly more complicated, and we will get back to it later.

Example 4. Let (V, E) be the directed graph shown in Figure 1, with the ordering on the vertices chosen to be (a, b, c). Then the adjacency matrix is

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Now if we reorder the vertices as (c, b, a), the adjacency matrix becomes

$$A' = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Example 5.

1. The relation

$$R = \{ (a, b) \in \mathbb{N} \times \mathbb{N} \mid a \text{ divides } b \}$$

is reflexive, anti-symmetric, and transitive.

2. The relation

$$R = \{ (a, b) \in \mathbb{N} \times \mathbb{N} \mid a + b \text{ is odd} \}$$

is symmetric but not reflexive or transitive.

8 Convince yourself of this from the definitions!
Closures of relations

If \(S \) is any set, then the entire cartesian product \(S \times S \) is itself a relation on \(S \). Note that certain properties are true for \(S \times S \): for example, of the four properties discussed in the previous section, \(S \times S \) has reflexivity, symmetry, and transitivity.

If \(R \) is any relation on \(S \), it makes sense to ask about the reflexive closure (resp. symmetric or transitive closure) of \(R \). In the following discussion we’ll talk about the reflexive closure, but you can use the same definition for symmetric and transitive closures respectively.

Informally, we’d like the reflexive closure of \(R \) to be the smallest relation on \(S \) that contains \(R \), and which is reflexive. If \(R \) is already reflexive, then it is its own reflexive closure. Otherwise, the reflexive closure will contain some more elements. But what does smallest mean in the above context\(^9\)? To make this precise, we give the following definition.

Definition 6. A reflexive (resp. symmetric, transitive) closure of \(R \) is a set \(\overline{R} \) with the following properties.

1. \(R \subset \overline{R} \subset S \times S \).
2. \(\overline{R} \) is reflexive (resp. symmetric, transitive).
3. If \(T \) is a subset of \(S \times S \) such that \(R \subset T \subset \overline{R} \), then \(T \) is not reflexive (resp. symmetric, transitive).

It can be shown that reflexive (resp. symmetric, transitive) closures always exist, and that they are unique\(^10\). We won’t prove this formally, but instead we will just produce a construction of each.

Let us first tackle the reflexive closure. To make a relation reflexive, we need to add in all pairs of the form \(\{(x, x)\} \), where \(x \in S \). So you can convince yourself that the reflexive closure is simply the set \(R \cup \{(x, x) \mid x \in S\} \): not only is this new relation reflexive, but also if you take away any pair that is not already an element of \(R \), you get something non-reflexive. In terms of adjacency matrices, the reflexive closure is the relation corresponding to the matrix obtained by changing all diagonal entries of the original adjacency matrix to 1. Similarly, the symmetric closure of \(R \) is obtained by adding the flipped pair \(\{(b, a)\} \) for every pair \((a, b) \in R \). This is the same thing as taking \(R \cup \{(a, b) \mid (b, a) \in R\} \). In terms of the adjacency matrix, we obtain this by symmetrising the adjacency matrix\(^11\): whenever \(A_{ij} = 1 \), we also set \(A_{ji} = 1 \).

Once again, it is not so easy to describe how to construct the transitive closure of a relation \(R \), but it can be done by developing some techniques for working with adjacency matrices. We will revisit this later once we have those techniques.

\(^9\) If \(S \) is a finite set, then we can say that smallest means the one with the least number of elements, but we give a general definition because we don’t want to be restricted to this case.

\(^10\) Think about when it makes sense to ask for the closure of a relation with respect to a property, and when you can expect it to exist uniquely. For example, it doesn’t really make sense to ask for the anti-symmetric closure of a relation. Do you see why?

\(^11\) This is the same as taking \(\frac{1}{2}(A + A^t) \). Do you see why?
Equivalence relations

Recall that a relation \(R \) on a set \(S \) is just a subset of the product \(S \times S \). We take a short tour through the theory of equivalence relations, which are extremely important in constructing all sorts of mathematical structures.

Definition 7. A *equivalence relation* is one that is reflexive, symmetric, and transitive.

Example 8. Let \(R \) be the relation on \(\mathbb{Z} \) defined as
\[
R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a - b \text{ is even}\}.
\]

Usually, if we have an equivalence relation \(R \) on a set \(S \), we say that \(x \sim_R y \) if \((x, y)\) is in \(R \). If the context is clear, we will simply say \(x \sim y \). The most important application is that having an equivalence relation on a set allows us to treat an object \(x \) as "being equivalent" to an object \(y \) if \(x \sim y \): the equivalence relation gives us a new way of identifying various objects. We will capture this identification with the notion of *equivalence classes*.

Definition 9. Let \(R \) be an equivalence relation on a set \(S \). For any \(x \in S \), the *equivalence class* of \(x \), denoted \([x] \), is the subset of \(S \) defined as follows:
\[
[x] = \{y \in S \mid x \sim_R y\}.
\]

The special properties that an equivalence relation satisfies guarantees the following proposition.

Proposition 10. Let \(R \) be an equivalence relation on a set \(S \).

1. Every element of \(S \) belongs to at least one equivalence class (its own!).
2. If \(x, y \in S \) such that \(y \in [x] \), then \([x] = [y] \).

In other words, the set of equivalence classes of an equivalence relation partitions the set \(S \) into disjoint subsets whose union is \(S \).

Proof. Let \(x \) be any element of \(S \). First note that \(x \in [x] \) by reflexivity, which proves the first statement. To prove the second statement,
suppose that \(x, y \in S \) such that \(y \in [x] \). To show that \([x] = [y] \), we need to show that for every \(z \in S \), we have \(z \in [x] \) if and only if \(z \in [y] \).

Recall that \(y \in [x] \) means that \(x \sim_R y \). If \(z \in [y] \), then we have \(z \in [x] \) by transitivity: \(x \sim_R y \) and \(y \sim_R z \) implies \(x \sim_R z \). On the other hand, since we know that \(y \in [x] \), we also have \(x \in [y] \) by symmetry, and then by the previous argument we see that if \(z \in [x] \) then \(z \in [y] \) by transitivity. The proof is now complete.

Often we can uncover new structures by working with the set of equivalence classes rather than the original set \(S \), and it can even give rise to new structures. An important example of this technique is modular arithmetic.

Modular arithmetic

As an important application of equivalence classes, we briefly study modular arithmetic. First recall the relation from Example 8. We can observe that in the integers, the sum of two numbers is always even. The sum of an even with an odd is odd, and the sum of two odd numbers is always odd. But the set of even numbers has another name: \([0]\), and the set of odd numbers is also called \([1]\) with respect to this relation.

So we can express the above statements by writing down the following statements instead.

1. Whenever \(a \in [0] \) and \(b \in [0] \), we have \(a + b \in [0] \).
2. Whenever \(a \in [0] \) and \(b \in [1] \), we have \(a + b \in [1] \).
3. Whenever \(a \in [1] \) and \(b \in [0] \), we have \(a + b \in [1] \).
4. Whenever \(a \in [1] \) and \(b \in [1] \), we have \(a + b \in [0] \).

Let us instead express this by defining a *new addition operation* on the set\(^\dagger\) \(\{[0], [1]\} \). We will simply define this addition using the four properties above, which can be written more concisely as

\[
[a] + [b] := [a + b] \quad \text{for each } a, b \in \mathbb{Z}.
\]

Because we know the properties we stated above about even/odd addition, we have effectively proven that it actually doesn’t matter which representative we take for each equivalence class. This is the idea behind modular arithmetic.

More generally, fix a *modulus* \(d \in \mathbb{N} \). We say that \(x \sim_d y \) if \(x - y \) is divisible by \(d \), which is also written as \(d \mid x - y \). More traditionally, we write \(x \equiv y \pmod{d} \). Note that if \(x \sim_d y \), then there is some integer \(m \in \mathbb{Z} \) such that \(x - y = md \).

\(^\dagger\) Note that this set is not equal to \(\mathbb{Z} \)!

It is also not equal to the set \(\{0, 1\} \).

Instead this is a set with two elements, which are themselves subsets of \(\mathbb{Z} \).

Exercise 11. Check that \(\sim_d \) is an equivalence relation.
In this case, we have equivalence classes \([0], [1], \ldots, [d - 1]\). Note that \([d] = [0]\) again. But if \(0 \leq e, f < d\), how do we know for sure that \([e] \neq [f]\) when \(e \neq f\)? We know this by Euclid’s algorithm, which guarantees that for every integer \(n\) and positive integer \(d\), we can write a unique equation
\[
n = qd + r, \quad 0 \leq r < d.
\]

In our case, suppose that \(e \geq f\). Since \(0 \leq e - f < d\), the equation for \(e - f\) has to be \(e - f = 0 \cdot d + (e - f)\). On the other hand if \([e] = [f]\) then we also have a valid equation that looks like \(e - f = m \cdot d + 0\) for some \(m\). Matching up the two, we see that \(m = 0\) and \(e = f\) is the only possibility.

Having established this, we now know that we have exactly \(d\) different equivalence classes, namely \([0], [1], \ldots, [d - 1]\). Of course these can be represented by different integers. For example, \([1] = \{\ldots, 1 - 2d, 1 - d, 1, 1 + d, 1 + 2d, \ldots\}\), so any of these elements would do as a representative of \([1]\). We will write \(\mathbb{Z}/d\mathbb{Z} = \{[0], \ldots, [d - 1]\}\) to be the set of equivalence classes in this case.

Once again we define a new addition operation, this time on \(\mathbb{Z}/d\mathbb{Z}\). The definition is the same: for any \([a], [b] \in \mathbb{Z}/d\mathbb{Z}\), set
\[
[a] + [b] := [a + b].
\]

We now have to check whether this is well-defined\(^1\) Suppose that \([p] = [a]\) and \([q] = [b]\). Then \(p - a = md\) and \(q - b = nd\) for some integers \(m, n\). Adding these, we see that \((p + q) - (a + b) = (m + n)d\), and so \([p + q] = [a + b]\). Indeed, our operation is well-defined! This is called modular addition.

Notice that this has properties similar to the addition in the integers, with some key differences. For example, we have the following.

\textit{similarity} \([0] + [a] = [a] + [0] = [a]\)

\textit{similarity} \([a] + [b] = [b] + [a]\)

\textit{difference}! \([a] + [a] + \cdots + [a]\) can equal \([0]\) even if \([a] \neq 0\). For example, \([1] + [1] + [1] = [0]\) when \(d = 3\).

What about multiplication? Can we define a modular multiplication? Let us try. We will attempt to define a multiplication operation by saying that
\[
[a] \cdot [b] \text{ should be } [ab].
\]

Again, we must check that this is well-defined. Suppose that \([p] = [a]\) and \([q] = [b]\). Then \(p - a = md\) and \(q - b = nd\) for some integers \(m, n\). Note that \(pq - aq = mqd\) and \(aq - ab = nad\). Adding these, we see that \(pq - ab = (mq + na)d\), so \([pq] = [ab]\), and this multiplication is well-defined! This is called modular multiplication.

\(\text{Exercise 12. What are some similarities and differences between modular multiplication and usual integer multiplication?}\)
Graphs

Overview

Let us recall the definitions. A (directed) graph consists of a vertex set V and an edge set $E \subset V \times V$. If $(a, b) \in E$, we also write $a \rightarrow b$ as a directed edge. Typically we consider finite vertex sets when we work with concrete examples. An undirected graph is one in which the edge relation is symmetric: $(a, b) \in E$ if and only if $(b, a) \in E$. In this case, we often group the two flipped ordered pairs $\{(a, b), (b, a)\}$ and think of it as a single undirected edge $a \sim b$. Note that in this case if $a = b$, then the set $\{(a, b), (b, a)\}$ just becomes $\{(a, a)\}$, so we don’t get a double loop.

Usually we consider simple graphs, that is, those where we disallow multiple edges and parallel loops.

Some natural questions

Graphs are a natural tool used to model various kinds of networks. This includes, for example, road/rail/flight networks, electrical/water flow networks, the “Facebook friend” graph, links between webpages, etc. Sometimes, these networks can be enhanced by adding “edge weights”, which can be used, for example, to represent the distance between the two corresponding vertices, or in the context of flows, the “capacity” of an edge. There are some very natural questions that one can ask about graphs: either practical ones that come up in many of the above contexts, or more theoretical ones. Here is a sample list, by no means exhaustive.

1. Is there a route from point A to point B?

2. How long is the route, and what is the shortest path?

3. How many routes are there? How long are they?

4. How much water/current/etc can flow through the network when at full capacity?

\[\text{Thursday 06 August 2020.} \]
5. Is there a good way to figure out natural "clusters" in the graph? For example, how does Facebook know whom to suggest to you as a potential friend?

6. Can you find an unbroken path along the edges of the graph that goes through each vertex exactly once? (This is the Hamiltonian path problem.)

7. Can you find an unbroken path along the edges of the graph that goes through each edge exactly once? (This is the Eulerian path problem.)

8. What is the shortest circuit (path that comes back to the starting point) that visits each vertex exactly once?

9. Is the graph planar? That is, can you draw the graph on a plane without crossing any of the edges?

Adjacency matrix

Recall the definition of an adjacency matrix of a graph. Given a graph \((V, E)\), first we order the set \(V\) into a tuple \((v_1, \ldots, v_n)\). Then we create an \(n \times n\) matrix \(A\) such that \(A_{ij} = 1\) if \(i \to j\) in the graph, and \(A_{ij} = 0\) otherwise. In this section we will see how studying adjacency matrices of graphs helps us make progress towards some of the questions above.

Matrix products

First we recall matrix products. If \(A\) is an \(m \times n\) matrix and \(B\) is an \(n \times p\) matrix, then we can construct a product matrix \(AB\), defined as follows:

\[
(AB)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{in}B_{nj} = \sum_{k=1}^{n} A_{ik}B_{kj}.
\]

Powers of the adjacency matrix

Consider the example directed graph shown in Figure 2. The adjacency matrix and its square are

\[
A = \begin{pmatrix}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad A^2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

Example 13. Suppose that

\[
A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & -2 \\ 2 & 3 & 4 \end{pmatrix}
\]

Then

\[
AB = \begin{pmatrix} 4 & 7 & 6 \\ -2 & -3 & -4 \end{pmatrix}.
\]
Note that $A^k = 0$ for all $k > 2$. From the graph and from the matrix, we see that the only nonzero entry in A^2 is the entry at position $(1,5)$, which equals 3. It arises as the sum $1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1$, which itself records all the possible compositions of two edges such that the composed path goes from 1 to 5. As in the picture, there are exactly three possibilities, and so the answer is 3.

This is a general phenomenon, and we have the following result.

** Proposition 14.** Let A be the adjacency matrix of a simple directed graph (V,E). Suppose that the vertices are ordered as (v_1, \ldots , v_n). Then the entry in the (i,j)th position of the kth power A^k of A counts the number of paths of length k from the vertex v_i to the vertex v_j.

Proof. We proceed by induction. Indeed for $k = 1$, from the definition of the adjacency matrix, the (i,j)th entry equals 1 if and only if there is an edge from i to j in the graph. Now assume that we know the result for some $k > 0$, and we prove it for $k + 1$.

Let $B = A^k$, so that we can write $A^{k+1} = B \cdot A$. We calculate the (i,j)th entry of A^{k+1} as follows.

By the definition of matrix product, we know that this entry is the following sum:

$$(A^{k+1})_{i,j} = B_{i,1} \cdot A_{1,j} + B_{i,2} \cdot A_{2,j} + \cdots + B_{i,n} \cdot A_{n,j}.$$

For each number $1 \leq \ell \leq n$, we know that $B_{i,\ell}$ is the number of paths of length k from v_i to v_{ℓ}, and $A_{\ell,j}$ is the number of edges from v_{ℓ} to v_j. All together, the product $B_{i,\ell} \cdot A_{\ell,j}$ equals the number of paths of length $k + 1$ from v_i to v_j that travel through the vertex v_{ℓ}. Since we add over all possible vertices v_{ℓ}, the result (which is the (i,j)th entry of A^{k+1}) is the total number of paths of length $k + 1$ from v_i to v_j. \qed

We can also use the adjacency matrix to answer questions about connectedness of graphs. Suppose we want to know whether there is a path (of any length) from a vertex v_i to a vertex v_j. The previous proposition tells us that to find paths of a given length k, we need to look at entries of A^k. So as long as we find a positive entry in the (i,j)th spot of some power of A, we know that we have found a path. In other words, we can look at the (i,j)th entry of a sum $A + A^2 + \cdots$, and stop once we find a positive entry.

But how do we know when to stop adding? To answer this question, let us analyse the shortest possible path from some v_i to some v_j, under the assumption that there is at least one path.

** Proposition 15.** If v_i and v_j are vertices in the graph such that there is at least one path from v_i to v_j, then the length of the shortest path from v_i to v_j cannot be more than n. Further, if $v_i \neq v_j$, then the length of the shortest path from v_i to v_j cannot be more than $n - 1$.

The Boolean product and transitive closures

In this subsection and the next, we study a couple of variant products on the adjacency matrix, that let us compute different things about our graphs. The first variant is the Boolean product, which will be used to compute transitive closures.

First we define the following binary operations on the set \{0, 1\}. That is, we define the following functions \(\{0, 1\} \times \{0, 1\} \to \{0, 1\} \).

Boolean addition This is also known as "OR" or "\(\lor \)", and is defined as follows:
\[
0 \lor 0 = 0, \quad 0 \lor 1 = 1 \lor 0 = 1 \lor 1 = 1.
\]

Boolean multiplication This is also known as "AND" or "\(\land \)", and is defined as follows:
\[
1 \land 1 = 1, \quad 0 \land 1 = 1 \land 0 = 0 \land 0 = 0.
\]

The Boolean matrix product is then defined on matrices with entries in the set \{0, 1\}, and also outputs a matrix with entries in the same set \{0, 1\}. To define the Boolean matrix product, we use \(\lor \) instead of plus, and \(\land \) instead of \(\times \) respectively, as follows. Let \(A \) be an \(m \times n \) matrix and \(B \) be an \(n \times k \) matrix, both with entries in the set \{0, 1\}. Then the Boolean product \(A \ast B \) is defined as follows (entry-wise):
\[
(A \ast B)_{ij} = (A_{i1} \land B_{1j}) \lor (A_{i2} \land B_{2j}) \lor \cdots \lor (A_{in} \land B_{nj})
= \bigvee_{k=1}^{n} A_{ik} \land B_{kj}.
\]

Now let \(A \) be the adjacency matrix of a graph. Then the \((i, j)\)th entry of the Boolean square of \(A \) equals 1 if and only if there exists a path of length two from \(i \) to \(j \) in the graph. This is because the \((i, j)\)th entry is a Boolean sum (\(\lor \)) of several entries, and the \(\ell \)th such entry equals 1 if and only if there is an edge from \(i \) to \(\ell \) and also an edge from \(\ell \) to \(j \). The Boolean sum of all of these equals 1 if and only if at least one of the entries is equal to 1, which is true if and only if there is some path of length two from \(i \) to \(j \). Extending this reasoning to a \(k \)-fold product, we obtain the following result. The proof is similar to that of Proposition 14 and so we omit it.

Proposition 16. Let \(A \) be the adjacency matrix of a simple directed graph \((V, E)\). Suppose that the vertices are ordered as \((v_1, \ldots, v_n)\). Then the entry in the \((i, j)\)th position of the \(k \)th Boolean power \(A^\ast k \) of \(A \) equals 1 if there is a path of length \(k \) from the vertex \(v_i \) to the vertex \(v_j \), and equals 0 otherwise.
Weighted graphs and weighted adjacency matrices

Now suppose that \(G = (V, E) \) is a weighted graph. This means that each edge has an associated weight, which is usually a non-negative real number. Mathematically, we can write this as a function \(w: E \to \mathbb{R} \), sending each edge to a real number. In practical applications, graphs often have edge weights, for example the length of a road or the cost of going through a toll bridge, and weighted graphs are models of these situations. We would like to use adjacency matrices to compute the weight of the least-cost (that is, smallest weight) path between any pair of vertices. We can achieve this by writing down a weighted adjacency matrix, and by computing a new product on it. The weighted adjacency matrix simply lists the weight of each edge. The diagonal entries are all 0 because one can get from any vertex to itself with zero cost (by not moving). All entries \((i, j)\) where \((i, j)\) is not an edge are set to \(\infty\).\(^{16}\)

Definition 17. Let \(G = (V, E) \) be a directed graph with weight function \(w: E \to \mathbb{R} \). Suppose that the vertices are ordered as \((v_1, \ldots, v_n)\). The weighted adjacency matrix of \(G \) is an \(n \times n \) matrix \(W \), defined as follows:

\[
W_{ij} = \begin{cases}
0, & \text{if } i = j, \\
 w((i, j)), & \text{if } (i, j) \in E, \\
\infty, & \text{otherwise}.
\end{cases}
\]

Note that this adjacency matrix is set up in a way such that the \((i, j)\)th entry shows the minimum-cost path of length at most 1 (that is, either one edge or no edge, in the case that \(i = j\)) from \(i\) to \(j\). To find the minimum-cost path of length at most 2 from \(i\) to \(j\), we need to iterate over all possible intermediate steps \(i \to \ell \to j\), add the edge weights of \(i \to \ell\) and \(\ell \to k\), and then take the minimum. This operation is extremely similar to the standard matrix product, except that instead of multiplying the \((i, \ell)\)th entry with the \((\ell, j)\)th entry we are adding them, and instead of adding over all possibilities we are taking the minimum over all possibilities. We define this “min-plus” matrix product as follows.

Definition 19. Let \(A \) be an \(m \times n \) matrix and \(B \) be an \(n \times k \) matrix, such that the entries of \(A \) and \(B \) are either real numbers or \(\infty\). The “min-plus” product of \(A \) and \(B \), denoted \(A \odot B \), is defined as follows (entry-wise):

\[
(A \odot B)_{i,j} = \min\{(A_{i1} + B_{1j}), (A_{i2} + B_{2j}), \ldots, (A_{in} + B_{nj})\}.
\]

Now let \(W \) be the weighted adjacency matrix of a weighted graph. Note that the \((i, j)\)th entry of \(W \odot W \) is precisely the weight of the minimum-weight path from \(i\) to \(j\) that has at most two edges. Generalising this, we have the following proposition. The proof is similar to that of Proposition 14, and is omitted.
Proposition 20. Let W be the weighted adjacency matrix of a weighted graph with n vertices.

1. The (i, j)-th entry of $W^\odot k$ is the weight of the minimum-weight path from i to j that has at most k edges.

2. If all the edge weights are non-negative, then the (i, j)-th entry of $W^\odot (n-1)$ is the weight of the minimum-weight path (with any number of edges) from i to j.

The technique of repeated squaring

This section is an aside. We discuss the method of repeated squaring to quickly find powers of a matrix (or indeed, to quickly find powers in general). This method works for any associative product operation, including the standard matrix product, the Boolean matrix product, and the min-plus matrix product. For concreteness, we discuss it for the standard matrix product.

Let A be a square matrix. The naive method to compute a power of A, for example A^8, would be to multiply A serially with itself 8 times. This consist of 7 matrix product operations. However, there is a quicker method: if we first find and save A^2, then we can multiply that with itself to obtain and save A^4, and finally multiply that with itself to get A^8. In total, that corresponds to only 3 matrix product operations! This is considerably faster than serial multiplication.

But what if we don’t have an even number, or a power of two as the power we need to compute? Suppose we are trying to compute A^n where n is not necessarily a power of two. In this case, we simply square the matrix repeatedly, saving the results, until we reach a power less than or equal to n. Then we write n as a sum of distinct powers of two\(^{19}\), and then multiply together the corresponding powers of A to get the final result. Here is an example.

Example 22. Suppose that $n = 19$. In this case, we remember $M_0 = A$, $M_1 = A^2$, $M_2 = M_1^2 = A^4$, $M_3 = A^8$, and $M_4 = A^{16}$. Finally, note that $19 = 16 + 2 + 1 = 2^4 + 2^1 + 2^0$, and so

$$A^{19} = M_4 \cdot M_1 \cdot M_0.$$

This process corresponds to a total of 6 matrix product operations (four squarings and two multiplications), as opposed to the 18 product operations required for serial multiplication.

Graph colouring
Partial orders

In this section we return to another important kind of relation, called partial orders. These are entirely different in flavour from equivalence relations, and are very useful to formalise. Once we cover the preliminaries, we will also see a few applications of the theory of partial orders.

Definition 23. A relation R on a set S is a partial ordering or partial order if it is reflexive, anti-symmetric, and transitive.

A set equipped with a partial order relation is called a partially ordered set. If R is a partial order on S, we usually write $x \preceq y$ if $(x, y) \in R$.

Here is an example of a non-numerical partial ordering.

Example 24. Suppose that S is any set, and let $\mathcal{P}(S)$ be the power set of S, so that the elements of $\mathcal{P}(S)$ are all the subsets of S. We can define a partial ordering on $\mathcal{P}(S)$ by setting $A \subseteq B$ whenever $A \subseteq B$. Let us check the three properties.

1. This relation is reflexive because any set A is a subset of itself.
2. It is anti-symmetric because if $A \subseteq B$ and $B \subseteq A$ both hold, then all elements of A are elements of B and all elements of B are elements of A, and so A and B must be equal.
3. It is transitive because whenever $A \subseteq B$ and $B \subseteq C$, we also have $A \subseteq C$.

Suppose that \preceq is a partial order on some set S.

Definition 26. We say that two elements $a, b \in S$ are comparable if they are related in some order, that is, either $a \preceq b$ or $b \preceq a$.

Here are a couple of other important examples of partial orderings.

- The usual inequality ordering on \mathbb{N}, \mathbb{Z}, \mathbb{Q}, or \mathbb{R}, where $a \preceq b$ whenever $a \leq b$ as numbers. This is a total order because any two numbers are comparable.

Note that a partially ordered set S need not be a set of numbers, so the curly inequality sign denoting the partial order relation is not necessarily a numerical inequality.

Let \preceq be a partial order on a set S. We say that this partial order is total if any two elements a, b of S are comparable. That is, we either have $a \preceq b$ or $b \preceq a$.

Exercise 25. Find examples to show that the partial order of Example 24 is not usually a total order.

Exercise 27. Check that the examples given satisfy the properties of being partial orders, and come up with some more of your own.
• The division ordering on \(\mathbb{N} \), where \(a \leq b \) whenever \(a \mid b \), that is, \(a \) is a factor of \(b \). This is not a total order, because (for example) 12 and 15 are incomparable.

Hasse diagrams

Incidence algebra

In this section we introduce a useful algebraic tool to work with partial orders. First we introduce some definitions. Let \((P, \preceq)\) be a partially ordered set. For \(x \preceq y \) in \(P \), the interval (or more specifically, the closed interval) \([x, y]\) is defined as follows:

\[
[x, y] = \{ z \in P \mid x \preceq z \preceq y \}.
\]

We can also define open and half open intervals as follows.

\[
(x, y) = \{ z \in P \mid x \prec z \prec y \},
\]

\[
(x, y] = \{ z \in P \mid x \prec z \preceq y \},
\]

\[
[x, y) = \{ z \in P \mid x \preceq z \prec y \}.
\]

Let \(I(P) \) be the set of all non-empty closed intervals of \(P \).

Definition 28. The incidence algebra of the poset \(P \) is defined as the set of all functions from \(I(P) \) to \(\mathbb{R} \):

\[
\mathcal{A}_P = \{ f : I(P) \to \mathbb{R} \}.
\]

Example 29. We note the following three examples of elements of \(\mathcal{A}_P \).

1. Set \(f_0 \) to be the function that sends every closed interval to 0:

\[
f_0([x, y]) = 0 \quad \forall x \preceq y.
\]

2. Set \(\delta \) to be the Kronecker delta function:

\[
\delta([x, y]) = \begin{cases} 1, & x = y, \\ 0, & x \neq y. \end{cases}
\]

3. Set \(\zeta \) to be the function that sends every closed interval to 1:

\[
\zeta([x, y]) = 1 \quad \forall x \preceq y.
\]

The incidence algebra may not seem all that interesting as a set. But it has several nice operations on it, which we now explore.

Addition If \(f, g \in \mathcal{A}_P \), we define their sum \(f + g \) as the following element of \(\mathcal{A}_P \):

\[
(f + g)([x, y]) = f([x, y]) + g([x, y]).
\]
Scalar multiplication If \(r \in \mathbb{R} \), and \(f \in A_P \) we define their scalar product \(rf \) as the following element\(^{20} \) of \(A_P \):

\[
(rf)([x, y]) = r \cdot f([x, y]).
\]

Convolution product If \(f, g \in A_P \), we define their convolution product \(f * g \) as the following element of \(A_P \):

\[
(f * g)([x, y]) = \sum_{x \leq z \leq y} f([x, z]) \cdot g([z, y]).
\]

The matrix representation of the incidence algebra

The convolution product on \(A_P \) does not seem very intuitive at first glance, and it is not clear why it might be useful. To understand the motivation behind this, we look at the matrix representation of \(A_P \). First, it will be useful to sort the elements of \(P \) in a nice way, in order to be able to write down matrices such as the adjacency matrix. Since \(P \) already has a partial order on it, it is most natural to sort the elements of \(P \) going "bottom to top along its Hasse diagram". More formally, this means that we should sort the elements so that whenever \(x \leq y \), we put \(x \) before \(y \) in our total sorting. This is called a topological sorting of \(P \).

Definition 30. Let \((P, \leq)\) be a poset. An ordering \(p_1, \ldots, p_n \) of the elements of \(P \) is called a topological sorting if whenever \(p_i \leq p_j \), we have \(i \leq j \).

Note that \(P \) may have several different valid topological sortings! To write down the matrix representation of \(A_P \), fix a topological sorting \(p_1, \ldots, p_n \) on \(P \).

Definition 31. Let \(f \in A_P \). The matrix corresponding to \(f \) (with respect to the chosen topological sorting) is defined to be an \(n \times n \) matrix \(M_f \), with the following entries:

\[
(M_f)_{i,j} = \begin{cases}
 f([p_i, p_j]), & p_i \leq p_j \\
 0, & \text{otherwise.}
\end{cases}
\]

We will soon see that the three operations we defined on the incidence algebra translate into already-familiar operations on matrices.