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In modern terms, enumerative geometry is the study of moduli spaces: in-
stead of counting various geometric objects, one describes the set of such ob-
jects, which if lucky enough to enjoy good geometric properties is called a moduli
space. For example, the moduli space of linear subspaces of An is the Grassman-
nian variety, which is a classical object in representation theory. Its cohomology
and intersection theory (as well as those of its more complicated cousins, the
flag varieties) have long been studied in connection with the Lie algebras sln.

The main point of this mini-course is to make the analogous connection between
the moduli space M of certain more complicated objects, specifically sheaves
on a smooth projective surface, with an algebraic structure called the elliptic
Hall algebra E (see [2], [24]). We will recall the definitions of these objects in
Sections 1 and 2, respectively, but we note that the algebra E is isomorphic to
the quantum toroidal algebra, which is a central-extension and deformation of
the Lie algebra gl1[s±1, t±1]. Our main result is the following (see [20]):

Theorem 1. There exists an action E y KM, defined as in Subsection 2.6.

One of the main reasons why one would expect the action E y KM is that it
generalizes the famous Heisenberg algebra action ([9], [14]) on the cohomology
of Hilbert schemes of points (see Subsection 2.1 for a review). In general, such
actions are useful beyond the beauty of the structure involved: putting an alge-
bra action on KM allows one to use representation theory in order to describe
various intersection-theoretic computations onM, such as Euler characteristics
of sheaves. This has far-reaching connections with mathematical physics, where
numerous computations in gauge theory and string theory have recently been
expressed in terms of the cohomology and K–theory groups of various moduli
spaces (the particular case of the moduli space of stable sheaves on a surface
leads to the well-known Donaldson invariants). Finally, we will give some hints
as to how one would categorify the action of Theorem 1, by replacing the K–
theory groups of M with derived categories of coherent sheaves. As shown
in [7], [21], this categorification is closely connected to the Khovanov homology
of knots in the 3-sphere or in solid tori, leading one to geometric knot invariants.

I would like to thank the organizers of the CIME School on Geometric Represen-
tation Theory and Gauge Theory: Ugo Bruzzo, Antonella Grassi and Francesco
Sala, for making this wonderful event possible. Special thanks are due to Davesh
Maulik and Francesco Sala for all their support along the way.
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1 Moduli spaces of sheaves on surfaces

The contents of this Section require knowledge of algebraic varieties, sheaves
and cohomology, and derived direct and inverse images of morphisms at the
level of [10]. Let X be a projective variety over an algebraically closed field of
characteristic zero, henceforth denoted by C. We fix an embedding X ↪→ PN ,
meaning that the tautological line bundle O(1) on projective space restricts to
a very ample line bundle on X, which we denote by OX(1). The purpose of this
Section is to describe a scheme M which represents the functor of flat families
of coherent sheaves on X, by which we mean the following things:

• for any scheme T , there is an identification:

Maps(T,M) ∼=
{
F coherent sheaf on T ×X which is flat over T

}
(1)

which is functorial with respect to morphisms of schemes T → T ′

• there exists a universal sheaf U onM×X, by which we mean that the
identification in the previous bullet is explicitly given by:

T
φ−→M ! F = (φ× IdX)∗(U) (2)

A coherent sheaf F on T ×X can be thought of as the family of its fibers over
closed points t ∈ T , denoted by Ft := F|t×X . There are many reasons why one
restricts attention to flat families, such as the fact that flatness implies that the
numerical invariants of the coherent sheaves Ft are locally constant in t. We
will now introduce the most important such invariant, the Hilbert polynomial.

1.1 Subschemes and Hilbert polynomials

A subscheme of X is the same thing as an ideal sheaf I ⊂ OX , and many
classical problems in algebraic geometry involve constructing moduli spaces of
subschemes of X with certain properties.

Example 1. If X = PN , the moduli space parametrizing k dimensional linear
subspaces of PN is the Grassmannian Gr(k + 1, N + 1).

We will often be interested in classifying subschemes of X with certain proper-
ties (in the example above, the relevant properties are dimension and linearity).
Many of these properties can be read off algebraically from the ideal sheaf I.

Definition 1. The Hilbert polynomial of a coherent sheaf F on X is defined as:

PF (n) = dimCH
0(X,F(n)) (3)

for n large enough. We write F(n) = F ⊗OX(n).
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In the setting of the Definition above, the Serre vanishing theorem ensures that
Hi(X,F(n)) = 0 for i ≥ 1 and n large enough, which implies that (3) is a
polynomial in n. A simple exercise shows that if:

0→ F → G → H → 0

is a short exact sequence of coherent sheaves on X, then:

PF (n) = PG(n)− PH(n)

Therefore, fixing the Hilbert polynomial of an ideal sheaf I ⊂ OX is the same
thing as fixing the Hilbert polynomial of the quotient OX/I, if X is given.

Example 2. If X = PN and I is the ideal sheaf of a k-dimensional linear
subspace, then OX/I ∼= OPk , which implies that:

POX/I(n) = dimCH
0(Pk,OPk(n)) =

= dimC

{
degree n part of C[x0, ..., xk]

}
=

(
n+ k

k

)
If I is the ideal sheaf of an arbitrary subvariety of PN , the degree of the Hilbert
polynomial POX/I is the dimension of the subscheme cut out by I, while the lead-
ing order coefficient of POX/I encodes the degree of the said subscheme. There-
fore, the Hilbert polynomial knows about geometric properties of subschemes.

1.2 Hilbert and Quot schemes

We have already seen that giving a subscheme of a projective variety X is the
same thing as giving a surjective map OX � OX/I, and that such subschemes
are parametrized by their Hilbert polynomials.

Definition 2. There exists a moduli space parametrizing subschemes I ⊂ OX
with fixed Hilbert polynomial P (n), and it is called the Hilbert scheme:

HilbP =
{
I ⊂ OX such that POX/I(n) = P (n) for n� 0

}
We also write:

Hilb =
⊔

P polynomial

HilbP

A particularly important case in the setting of our lecture notes is when the
Hilbert polynomial P (n) is constant, in which case the subschemes OX/I are
finite length sheaves. More specifically, if P (n) = d for some d ∈ N, then HilbP
parametrizes subschemes of d points on X. It is elementary to see that Defini-
tion 2 is the V = OX case of the following more general construction:

Definition 3. Fix a coherent sheaf V on X and a polynomial P (n). There
exists a moduli space, called the Quot scheme, parametrizing quotients:

QuotV,P =
{
V � F such that PF (n) = P (n) for n� 0

}
3



We also write:
QuotV =

⊔
P polynomial

QuotV,P

Definitions 2 and 3 concern the existence of projective varieties (denoted by
Hilb and QuotV , respectively) which represent the functors of flat families of
ideal sheaves I ⊂ OX and quotients V � F , respectively. In the language at
the beginning of this Section, we have natural identifications:

Maps(T,Hilb) ∼=
{
I ⊂ OT×X , such that I is flat over T

}
(4)

Maps(T,QuotV) ∼=
{
π∗(V)� F , such that F is flat over T

}
(5)

where I and F are coherent sheaves on T × X, and π : T × X → X is the
standard projection. The flatness hypothesis on these coherent sheaves implies
that the Hilbert polynomial of the fibers OX/It and Ft are locally constant
functions of the closed point t ∈ T . If these Hilbert polynomials are equal to
a given polynomial P , then the corresponding maps in (4) and (5) land in the
connected components HilbP ⊂ Hilb and QuotV,P ⊂ QuotV , respectively.

The construction of the schemes HilbP and QuotV,P is explained in Chapter 2
of [11], where the authors also show that (2) is satisfied. Explicitly, there exist
universal sheaves I on Hilb × X and F on QuotV × X such that the identifi-
cations (4) and (5) are given by sending a map φ : T → Hilb, QuotV to the
pull-back of the universal sheaves under φ.

Example 3. Let us take X = P1 and consider zero-dimensional subschemes
of X. Any such subscheme Z has finite length as an OX-module, so we may
assume this length to some d ∈ N. The ideal sheaf of Z is locally principal,
hence there exist [a1 : b1], ..., [ad : bd] ∈ P1 such that I is generated by:

(sa1 − tb1)...(sad − tbd)

where C[s, t] is the homogeneous coordinate ring of X. Therefore, length d
subschemes of P1 are in one-to-one correspondence with degree d homogeneous
polynomials in s, t (up to scalar multiple) and so it should not be a surprise that:

Hilbd ∼= Pd (6)

A similar picture holds when X is a smooth curve C, and the isomorphism (6)
holds locally on the Hilbert scheme of length d subschemes of C.

1.3 Moduli space of sheaves

If X is a projective variety, the only automorphisms of OX are scalars (elements
of the ground field C). Because of this, Hilb = QuotOX is the moduli space of
coherent sheaves of the form F = OX/I. Not all coherent sheaves are of this
form, e.g. F = Cx ⊕ Cx cannot be written as a quotient of OX for any closed
point x ∈ X. However, Serre’s theorem implies that all coherent sheaves F with
fixed Hilbert polynomial can be written as quotients:

φ : OX(−n)P (n) � F (7)
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for some large enough n, where OX(1) is the very ample line bundle on X
induced from the embedding of X ↪→ PN (the existence of (7) stems from the
fact that F(n) is generated by global sections, and its vector space of sections
has dimension P (n)). Therefore, intuitively one expects that the “scheme”:

MP “ := ”
{
F coherent sheaf on X with Hilbert polynomial P

}
(8)

(in more detail, MP should be a scheme with the property that Maps(T,MP )
is naturally identified with the set of coherent sheaves F on T × X which are
flat over t, and the Hilbert polynomial of the fibers Ft is given by P ) satisfies:

MP = QuotOX(−n)P (n),P /GLP (n) (9)

where g ∈ GLP (n) acts on a homomorphism φ as in (7) by sending it to φ ◦ g−1.

The problem with using (9) as a definition is that if G is a reductive algebraic
group acting on a projective variety Y , it is not always the case that there exists
a geometric quotient Y/G (i.e. a scheme whose closed points are in one-to-one
correspondence with G-orbits of Y ). However, geometric invariant theory ([13])
allows one to define an open subset Y stable ⊂ Y of stable points, such that
Y stable/G is a geometric quotient. The following is proved, for instance, in [11]:

Theorem 2. A closed point (7) of QuotOX(−n)P (n),P is stable under the action
of GLP (n) from (9) if and only if the sheaf F has the property that:

pG(n) < pF (n), for n large enough

for any proper subsheaf G ⊂ F , where the reduced Hilbert polynomial pF (n) is
defined as the Hilbert polynomial PF (n) divided by its leading order term.

Therefore, putting the previous paragraphs together, there is a scheme:

MP :=
{
F stable coherent sheaf on X with Hilbert polynomial P

}
(10)

which is defined as the geometric quotient:

MP = Quotstable
OX(−n)P (n),P /GLP (n) (11)

Moreover, [11] prove that under certain numerical hypotheses (specifically, that
the coefficients of the Hilbert polynomial P (n) written in the basis

(
n+i−1

i

)
be

coprime integers) there exists a universal sheaf U on MP × X. This sheaf is
supposed to ensure that the identification (1) is given explicitly by (2), and we
note that the universal sheaf is only defined up to tensoring with an arbitrary
line bundle pulled back from MP . We fix such a choice throughout this paper.

1.4 Tangent spaces

From now on, let us restrict to the case of moduli spaces M of stable sheaves
over a smooth projective surface S. Then the Hilbert polynomial of any coherent
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sheaf is completely determined by 3 invariants: the rank r, and the first and
second Chern classes c1 and c2 of the sheaf. We will therefore write:

M(r,c1,c2) ⊂M

for the connected component ofM which parametrizes stable sheaves on S with
the invariants r, c1, c2. For the remainder of this paper, we will make:

Assumption A: gcd(r, c1 · O(1)) = 1 (12)

As explained in the last paragraph of the preceding Subsection, Assumption A
implies that there exists a universal sheaf on M× S.

Exercise 1. Compute the Hilbert polynomial of a coherent sheaf F on a smooth
projective surface S in terms of the invariants r, c1, c2 of F , the invariants
c1(S), c2(S) of the tangent bundle of S, and the first Chern class of the line
bundle OS(1) (Hint: use the Grothendieck-Hirzebruch-Riemann-Roch theorem).

The closed points of the scheme M are Maps(C,M), which according to (1)
are in one-to-one correspondence to stable coherent sheaves F on S. As for the
tangent space to M at such a closed point F , it is given by:

TanFM =

{
maps Spec

C[ε]

ε2

Ψ−→M which restrict to Spec C F−→M at ε = 0

}
(13)

Under the interpretation (1) of Maps(C[ε]/ε2,M), one can prove the following:

Exercise 2. The vector space TanFM is naturally identified with Ext1(F ,F).

It is well-known that a projective scheme (over an algebraically closed field of
characteristic zero) is smooth if and only if all of its tangent spaces have the
same dimension. Using this, one can prove:

Exercise 3. The scheme M is smooth if the following holds:

Assumption S:

{
KS ∼= OS or

KS · O(1) < 0
(14)

Hint: show that the dimension of the tangent spaces Ext1(F ,F) is locally con-
stant, by using the fact that the Euler correspondence:

χ(F ,F) =

2∑
i=0

(−1)i dim Exti(F ,F)

is locally constant, and the fact that stable sheaves F are simple, i.e. their only
automorphisms are scalars (as for Ext2(F ,F), you may compute its dimension
by using Serre duality on a smooth projective surface).

6



In fact, one can even compute χ(F ,F) by using the Grothendieck-Hirzebruch-
Riemann-Roch theorem. The exact value will not be important to us, but:

Exercise 4. Show that (under Assumption S):

dimM(r,c1,c2) = const + 2rc2 (15)

where const is an explicit constant that only depends on S, r, c1 and not on c2.

1.5 Hecke correspondences - part 1

Fix r and c1. The moduli space of Hecke correspondences is the locus of pairs:

Z1 =
{

pairs (F ′,F) s.t. F ′ ⊂ F
}
⊂
⊔
c2∈Z
M(r,c1,c2+1) ×M(r,c1,c2) (16)

In the setting above, the quotient sheaf F/F ′ has length 1, and must therefore
be isomorphic to Cx for some closed point x ∈ S. If this happens, we will use
the notation F ′ ⊂x F . We conclude that there exist three maps:

Z1

p+

~~
pS

��

p−

  
M S M

(F ′ ⊂x F)
p+

zz
pS

��

p−

$$
F ′ x F

(17)

It is not hard to see that the maps p+, p−, pS are all proper. In fact, we have
the following explicit fact, which also describes the scheme structure of Z1:

Exercise 5. The scheme Z1 is the projectivization of a universal sheaf:

U

��
M× S

(18)

in the sense that PM×S(U) ∼= Z1
p−×pS−−−−→M× S.

By definition, the projectivization of U is:

PM×S(U) = ProjM×S (Sym∗(U)) (19)

and it comes endowed with a tautological line bundle, denoted by O(1), and
with a map ρ : PM×S(U)→M×S. The scheme (19) is completely determined
by the fact that maps Φ : T → PM×S(U) are in one-to-one correspondence with
triples consisting of the following: a map φ : T →M× S, a line bundle L on T
(which will be the pull-back of O(1) under Φ), and a surjective map φ∗(U)� L.
However, in the case at hand, we can describe (19) a bit more explicitly:
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Exercise 6. There is a short exact sequence on M× S:

0→W → V → U → 0 (20)

where V and W are locally free sheaves on M×S (see Proposition 2.2 of [18]).

As a consequence of Exercise 6, we have an embedding:

Z1
∼= PM×S(U)

� � ι //

p−×pS ((

PM×S(V)

ρ

��
M× S

(21)

which is very helpful, since PM×S(V) is a projective space bundle over M× S,
hence smooth. Moreover, one can even describe the ideal of the embedding ι
above. Try to show that it is equal to the image of the map:

ρ∗(W)⊗O(−1)→ ρ∗(V)⊗O(−1)→ O (22)

on PM×S(V). Therefore, we conclude that Z1 is cut out by a section of the
vector bundle ρ∗(W∨)⊗O(1) on the smooth scheme PM×S(V).

Exercise 7. Under Assumption S, Z1 is smooth of dimension:

const + r(c2 + c′2) + 1

where c2 and c′2 are the locally constant functions on Z1 = {(F ′ ⊂ F)} which
keep track of the second Chern classes of the sheaves F and F ′, respectively.
The number const is the same one that appears in (15).

Exercise 7 is a well-known fact, which was first discovered for Hilbert schemes
more than 20 years ago. You may prove it by describing the tangent spaces
to Z1 in terms of Ext groups (emulating the isomorphism (13) of the previous
Subsection), or by looking at Proposition 2.10 of [18]. As a consequence of the
dimension estimate in Exercise 7, it follows that the section (22) is regular, and
so Z1 is regularly embedded in the smooth variety PM×S(V).

1.6 K-theory and derived categories

The schemesM and Z1 will play a major role in what follows, but we must first
explain what we wish to do with them. Traditionally, the enumerative geometry
of such moduli spaces of sheaves is encoded in their cohomology, but in the
present notes we will mostly be concerned with more complicated invariants.
First of all, we have their K–theory groups:

KM and KZ1

which are defined as the Q-vector spaces generated by isomorphism classes of
locally free sheaves on these schemes, modulo the relation [F ] = [G]− [H] when-
ever we have a short exact sequence of locally free sheaves 0→ F → G → H → 0.
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Example 4. K–theory is always a ring, with respect to direct sum and tensor
product of vector bundles. In particular, we have a ring isomorphism:

KPn →
Q[ξ]

(1− ξ)n+1
, O(1) 7→ ξ

Functoriality means that if f : X → Y , then there should exist homomorphisms:

KX
f∗−⇀↽−
f∗

KY

called push-forward and pull-back (or direct image and inverse image, respec-
tively). With our definition, the pull-back f∗ is well-defined in complete gener-
ality, while the push-forward f∗ is well-defined when f is proper and Y is smooth.

Remark 1. There is an alternate definition of K–theory, which uses isomor-
phism classes of coherent sheaves instead of locally free ones. On a smooth
projective scheme, the two notions are equivalent because any coherent sheaf
has a finite resolution in terms of locally free sheaves. However, the version of
K–theory that uses coherent sheaves has different functoriality properties: the
existence of the push-forward f∗ only requires f : X → Y to be a proper mor-
phism (with no restriction on Y ), while the pull-back f∗ requires f to be an l.c.i.
morphism (or at least to satisfy a suitable Tor finiteness condition).

K–theory is a shadow of a more complicated notion, known as the derived
category of perfect complexes, which we will denote by:

DM and DZ1

Specifically, the derived category of a projective variety has objects given by
complexes of locally free sheaves and morphisms given by maps of complexes,
modulo homotopies, and inverting quasi-isomorphisms (in other words, any map
of complexes which induces isomorphisms on cohomology is formally considered
to be an isomorphism in the derived category). There is a natural map:

Obj DX → KX

which sends a complex of locally free sheaves to the alternating sum of its
cohomology groups. Since derived categories have, more or less, the same func-
toriality properties as K–theory groups, we will not review them here. However,
we will compare Example 4 with the following result, due to Beilinson:

Example 5. Any complex in DPn is quasi-isomorphic to a complex of direct
sums and homological shifts of the line bundles {O,O(1), ...,O(n)}. The Koszul
complex:[

O → O(1)⊕n+1 → O(2)⊕(n+1
2 ) → ...→ O(n)⊕(n+1

n ) → O(n+ 1)
]

is exact, hence quasi-isomorphic to 0 in DPn . This is the categorical version of:

(1−ξ)n+1 = 1−(n+1)ξ+

(
n+ 1

2

)
ξ2−...+(−1)n

(
n+ 1

n

)
ξn+(−1)n+1ξn+1 = 0

which is precisely the relation from Example 4.
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2 Representation theory

2.1 Heisenberg algebras and Hilbert schemes

Consider the Hilbert scheme Hilbd of d points on a smooth projective algebraic
surface S. A basic problem is to compute the Betti numbers:

bi(Hilbd) = dimQH
i(Hilbd,Q)

and their generating function B(Hilbd, t) =
∑
i≥0 t

ibi(Hilbd). It turns out that
these are easier computed if we consider all d from 0 to ∞ together, as was
revealed in the following formula (due to Ellingsrud and Strømme [3] for S = A2

and then to Göttsche [8] in general):

∞∑
d=0

qdB(Hilbd, t) =

∞∏
i=1

(1 + t2i−1qi)b1(S)(1 + t2i+1qi)b3(S)

(1− t2i−2qi)b0(S)(1− t2iqi)b2(S)(1− t2i+2qi)b4(S)
(23)

The reason for the formula above was explained, independently, by Grojnowski
[9] and Nakajima [14]. To summarize, they introduced an action of a Heisenberg
algebra (to be defined) associated to the surface S on the cohomology group:

H =

∞⊕
d=0

Hd, where Hd = H∗(Hilbd,Q) (24)

Since the Betti numbers are just the graded dimensions of H, formula (23)
becomes a simple fact about characters of representations of the Heisenberg al-
gebra. The immediate conclusion is that the representation theory behind the
action Heis y H can help one prove numerical properties of H.

Definition 4. The Heisenberg algebra Heis is generated by infinitely many
symbols {an}n∈Z\0 modulo the relation:

[an, am] = δ0
n+mn (25)

Let us now describe the way the Heisenberg algebra of Definition 4 acts on the
cohomology groups (24). It is not as straightforward as having a ring homomor-
phism Heis → End(H), but it is morally very close. To this end, let us recall
Nakajima’s formulation of the action from [14]. Consider the closed subset:

Hilbd,d+n =
{

(I, I ′, x) such that I ′ ⊂x I
}
∈ Hilbd ×Hilbd+n × S (26)

(recall that I ′ ⊂x I means that the quotient I/I ′ is a finite length sheaf, specif-
ically length n, supported at the closed point x). We have three natural maps:

Hilbd,d+n

p−

yy
pS

��

p+

&&
Hilbd S Hilbd+n

(27)
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While the schemes Hilbd and S are smooth, Hilbd,d+n are not. However, the
maps p±, pS are proper, and therefore the following operators are well-defined:

Hd
An−−→ Hd+n ⊗HS An = (p+ × pS)∗ ◦ p∗− (28)

Hd+n
A−n−−−→ Hd ⊗HS A−n = (−1)n−1 · (p− × pS)∗ ◦ p∗+ (29)

where HS = H∗(S,Q). We will use the notation A±n for the operators above
for all d, so one should better think of A±n as operators H → H⊗HS . Then the
main result of Nakajima and Grojnowski states (in a slightly rephrased form):

Theorem 3. We have the following equality of operators H → H ⊗HS ⊗HS:

[An, Am] = δ0
n+mn · IdH ⊗ [∆] (30)

where in the left hand side we take the difference of the compositions:

H
Am−−→ H ⊗HS

An⊗IdS−−−−−→ H ⊗HS ⊗HS

H
An−−→ H ⊗HS

Am⊗IdS−−−−−→ H ⊗HS ⊗HS
IdH⊗swap−−−−−−−→ H ⊗HS ⊗HS

and in the right-hand side we multiply by the Poincaré dual class of the diagonal
∆ ↪→ S×S in H∗(S×S,Q) = HS⊗HS. The word “swap” refers to the permuta-
tion of the two factors of HS, and the reason it appears is that we want to ensure
that in (30) the operators An, Am each act in a single tensor factor of HS⊗HS.

We will refer to the datum An : H → H ⊗ HS , n ∈ Z\0 as an action of the
Heisenberg algebra on H, and relation (30) will be a substitute for (25). There
are two ways one can think about this: the first is that the ring HS is like the
ring of constants for the operators An. The second is that one can obtain actual
endomorphisms of H associated to any class γ ∈ HS by the expressions:

H
Aγn−−→ H Aγn =

∫
S

γ ·An

H
Aγ−n−−−→ H Aγ−n =

∫
S

γ ·A−n

where
∫
S

: HS → Q is the integration of cohomology on S. It is not hard to
show that (30) yields the following commutation relation of operators H → H:

[Aγn, A
γ′

m] = δ0
n+mn

∫
S

γγ′ · IdH

for any classes γ, γ′ ∈ HS . The relation above is merely a rescaled version of
relation (25), and it shows that each operator An : H → H ⊗ HS defined by
Nakajima and Grojnowski entails the same information as a family of endomor-
phisms of H indexed by the cohomology group of the surface S itself.

2.2 Going forward

Baranovsky [1] generalized Theorem 3 to the setup where Hilbert schemes are
replaced by the moduli spaces of stable sheaves:

M =
⊔
c2∈Z
M(r,c1,c2)
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from Subsection 1.4 (for fixed r, c1 and with Assumption S in effect). A different
generalization entails going from cohomology to K–theory groups, and this is a
bit more subtle. The first naive guess is that one should define operators:

KM
An−−→ KM ⊗KS

for all n ∈ Z\0 which satisfy the following natural deformation of relation (30):

[An, Am] = δ0
n+m

1− qrn

1− q
· IdKM ⊗ [∆] (31)

where q is some invertible parameter (the reason for the appearance of r in the
exponent is representation-theoretic, in that K–theory groups of moduli spaces
of rank r sheaves yield level r representations of Heisenberg algebras). However,
we have already said that the “ground ring” should be KS , so the parameter
q should be an invertible element of KS (it will later turn out that q is the
K–theory class of the canonical line bundle of S) and relation (31) should read:

[An, Am] = δ0
n+mIdKM ⊗∆∗

(
1− qrn

1− q

)
(32)

But even this form of the relation is wrong, mostly because the Künneth formula
does not hold (in general) in K–theory: KM×S 6∼= KM ⊗ KS . Therefore, the
operators we seek should actually be:

KM
An−−→ KM×S (33)

and they must satisfy the following equality of operators KM → KM×S×S :

[An, Am] = δ0
n+m∆∗

(
1− qrn

1− q
· proj∗

)
(34)

where proj : M× S → M is the natural projection. So you may ask whether
the analogues of the operators (28) and (29) in K–theory will do the trick.
The answer is no, because the pull-back maps p∗± from (27) are not the right
objects to study in K–theory. This is a consequence of the fact that the schemes
Hilbd,d+n are very singular for n ≥ 2, and even if the pull-back maps p∗± were
defined, then it is not clear what the structure sheaf of Hilbd,d+n should be
replaced with in K–theory, in order to give rise to the desired operators (33).

2.3 Framed sheaves on A2

We will now recall the construction of Schiffmann and Vasserot, which generalize
the Heisenberg algebra action in the case when S = A2, in the setting of equivari-
ant K–theory (with respect to the action of the standard torus C∗×C∗ y A2).
Historically, this work is based on the computation of K–theoretic Hall algebras
by Ginzburg and Vasserot [24], generalized by Varagnolo and Vasserot [25], and
then by Nakajima [15] to the general setting of quiver varieties.

First of all, since the definition of moduli spaces in the previous Section applies
to projective surfaces, we must be careful in defining the moduli spaceM when
S = A2. The correct definition is the moduli space of framed sheaves on P2:

M =

{
F rank r torsion-free sheaf on P2,F|∞

φ∼= O⊕r∞
}

12



where∞ ⊂ P2 denotes the divisor at infinity. The spaceM is a quasi-projective
variety, and we will denote its C∗×C∗ equivariant K–theory group by KM. One
can define the scheme Z1 as in Subsection 1.5 and note that it is still smooth.
There is a natural line bundle:

L

��
Z1

whose fiber over a closed point {(F ′ ⊂x F)} is the one-dimensional space Fx/F ′x.
The maps p± of (17) are still well-defined, and they allow us to define operators:

KM
Ek−−→ KM, Ek = p+∗

(
L⊗k · p∗−

)
(35)

for all k ∈ Z. Note that the map p∗− : KM → KZ1 is well-defined in virtue of
the smoothness of the spaces Z1 andM. The following is the main result of [24]:

Theorem 4. The operators (35) satisfy the relations in the elliptic Hall algebra.

To be more precise, [24] define an extra family of operators fk defined by replac-
ing the signs + and − in (35), as well as a family of multiplication operators hk,
and they show that the three families of operators ek, fk, hk generate the double
elliptic Hall algebra. We will henceforth focus only on the algebra generated by
the operators {ek}k∈Z in order to keep things simple, and we will find inside
this algebra the positive half of Heis (i.e. the operators (33) for n > 0).

Remark 2. Theorem 4 was obtained simultaneously by Feigin and Tsymbaliuk
in [4], by using the Ding-Iohara-Miki algebra instead of the elliptic Hall algebra
(Schiffmann showed in [23] that the two algebras are isomorphic). We choose to
follow the presentation in terms of the elliptic Hall algebra for two important and
inter-related reasons: the generators of the elliptic Hall algebra are suitable for
categorification and geometry, and the Heisenberg operators (33) can be more
explicitly described in terms of the elliptic Hall algebra than in terms of the
isomorphic Ding-Iohara-Miki algebra.

2.4 The elliptic Hall algebra

The elliptic Hall algebra E was defined by Burban and Schiffmann in [2], as a
formal model for part of the Hall algebra of the category of coherent sheaves on
an elliptic curve over a finite field. The two parameters q1 and q2 over which
the elliptic Hall algebra are defined play the roles of Frobenius eigenvalues.

Definition 5. Write q = q1q2. The elliptic Hall algebra E is the Q(q1, q2)
algebra generated by symbols {an,k}n∈N,k∈Z modulo relations (36) and (37):

[an,k, an′,k′ ] = 0 (36)

if nk′ − n′k = 0, and:

[an,k, an′,k′ ] = (1− q1)(1− q2)
bn+n′,k+k′

1− q−1
(37)

13



if nk′−n′k = s and {s, 1, 1} = {gcd(n, k), gcd(n′, k′), gcd(n+n′, k+k′)}, where:

1 +

∞∑
s=1

bn0s,k0s

xs
= exp

( ∞∑
s=1

an0s,k0s(1− q−s)
sxs

)

for any coprime n0, k0, where we write q = q1q2.

In full generality, the elliptic Hall algebra defined in [2] has generators an,k for
all (n, k) ∈ Z2\(0, 0), and relation (36) is replaced by a deformed Heisenberg
algebra relation between the elements {ans,ks}s∈Z\0, for any coprime n, k. We
refer the reader to Section 2 of [19], where the relations in E are recalled in our
notation. However, we need to know two things about this algebra:

• the operators {ek}k∈Z of (35) will play the role of a1,k

• the Heisenberg operators {An}n∈N of (34) will play the role of an,0

Therefore, the elliptic Hall algebra contains all the geometric operators we have
discussed so far, and more. Therefore, the next natural step is to identify the
geometric counterparts of the general operators an,k (which were first discovered
in [17] for S = A2), but the way to do so will require us to introduce the shuffle
algebra presentation of the elliptic Hall algebra.

2.5 The shuffle algebra

Shuffle algebras first arose in the context of Lie theory and quantum groups in
the work of Feigin and Odesskii [5]. Various instances of this construction have
appeared since, and the one we will mostly be concerned with is the following:

Definition 6. Let ζ(x) = (1−q1x)(1−q2x)
(1−x)(1−qx) . Consider the Q(q1, q2)-vector space:

∞⊕
n=0

Q(q1, q2)(z1, ..., zn)Sym (38)

endowed with the following shuffle product for any f(x1, ..., xn) and g(x1, ..., xm):

f ∗ g = Sym

f(x1, ..., xn)g(xn+1, ..., xn+m)

1≤i≤n∏
n+1≤j≤n+m

ζ

(
xi
xj

) (39)

where Sym always refers to symmetrization with respect to all z variables. Then
the shuffle algebra S is defined as the Q(q1, q2)-subalgebra of (38) generated
by the elements {zk1}k∈Z in the n = 1 direct summand.

It was observed in [24] that the map E Υ−→ S given by Υ(a1,k) = zk1 is an
isomorphism. The images of the generators an,k under the isomorphism Υ were
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worked out in [16], where it was shown that:

Υ(an,k) = Sym

∏n
i=1 z

d kin e−d k(i−1)
n e+δni −δ0i

i(
1− qz2

z1

)
...
(

1− qzn
zn−1

) ∏
1≤i<j≤n

ζ

(
zi
zj

)
(

1 +
qza(s−1)+1

za(s−1)
+
q2za(s−1)+1za(s−2)+1

za(s−1)za(s−2)
+ ...+

qs−1za(s−1)+1...za+1

za(s−1)...za

)]
(40)

where s = gcd(n, k) and a = n/s. Note that it is not obvious that the elements
(40) are in the shuffle algebra, and the way [16] proves this fact is by showing
that S coincides with the linear subspace of (38) generated by rational functions:

r(z1, ..., zn)∏
1≤i6=j≤n(zi − qzj)

where r goes over all symmetric Laurent polynomials that vanish at {z1, z2, z3} =
{1, q1, q} and at {z1, z2, z3} = {1, q2, q}. These vanishing properties are called
the wheel conditions, following those initially introduced in [5].

Formula (40) shows the importance of considering the following elements of E :

ek1,...,kn = Υ−1

Sym

 zk11 ...zknn(
1− qz2

z1

)
...
(

1− qzn
zn−1

) ∏
1≤i<j≤n

ζ

(
zi
zj

) (41)

for any k1, ..., kn ∈ Z.

Exercise 8. Show that the right-hand side of (41) lies in S by showing that it
satisfies the wheel conditions that we discussed previously.

Exercise 9. Prove the following commutation relations, for all d, k1, ..., kn ∈ Z:

[ek1,...,kn , ed] = (1− q1)(1− q2)

n∑
i=1

{∑
ki≤a<d ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d > ki

−
∑
d≤a<ki ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d < ki

(42)

There is no summand in the right-hand side corresponding to ki = d. You may
prove (42) by expressing it as an equality of rational functions in the shuffle
algebra S, which you may then prove explicitly (it is not hard, but also not im-
mediate, so try the cases n ∈ {1, 2} first).

It is clear from relations (36) and (37) that the elements ek = a1,k generate
the algebra E , since any an,k can be written in terms of sums and products of
ek’s. Using the main result of [23], one may show that (42) control all relations
among the generators ek ∈ E . In fact, these relations are over-determined, but
we like them because they allow us to express linear combinations of ek1,...,kn as
explicit commutators of ek’s. Therefore, if you have an action of E where you
know how the ek act, and you wish to prove that the operators ek1,...,kn act by
some formula (∗), all you need to do is prove that formula (∗) satisfies (42).
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2.6 The action of E on KM

We will now apply the philosophy in the previous paragraph to the setting of
the K–theory group of the moduli space M of sheaves on a smooth projective
surface S (with fixed rank r and first Chern class c1). As we have seen in
Subsection 2.2, the way to go is to define operators:

KM
Ek1,...,kn−−−−−−→ KM×S (43)

for all k1, ..., kn ∈ Z which satisfy the following analogue of relation (42):

[Ek1,...,kn , Ed] =

= ∆∗

(
n∑
i=1

{∑
ki≤a<dEk1,...,ki−1,a,ki+d−a,ki+1,...,kn if d > ki

−
∑
d≤a<ki Ek1,...,ki−1,a,ki+d−a,ki+1,...,kn if d < ki

)
(44)

as operators KM → KM×S×S . The left-hand side is defined as in Theorem 3,
taking care that each of the operators Ek1,...,kn and Ed acts in one and the same
factor of S×S. The reason why ∆∗ is the natural substitute for (1− q1)(1− q2)
from (42) is that the K–theory class of the diagonal ∆ ↪→ A2 × A2 is equal to
0 in non-equivariant K–theory, but it is equal to (1− q1)(1− q2) equivariantly.

Theorem 5. There exist operators (43) satisfying (44), with Ek given by (35).

In particular, the operators E0,...,0 all commute with each other, and they will
give rise to the K–theoretic version of the positive half of the Heisenberg algebra
from Subsection 2.1. It is possible to extend Theorem 5 to the double of all alge-
bras involved (thus yielding the full Heisenberg) and details can be found in [20].

Given operators λ, µ : KM → KM×S , let us define the following operations:

λµ|∆ = composition
{
KM

µ−→ KM×S
λ�IdS−−−−→ KM×S×S

IdM�∆∗−−−−−−→ KM×S

}
[λ, µ]red = ν : KM → KM×S if ν is such that [λ, µ] = ∆∗(ν)

Note that if ν as above exists, it is unique because the map ∆∗ is injective (it
has a left inverse, i.e. the projection S × S → S to one of the factors).

Exercise 10. For arbitrary λ, µ, ν : KM → KM×S, prove the following versions
of associativity, the Leibniz rule, and the Jacobi identity, respectively:

(λµ|∆)ν|∆ = λ(µν|∆)|∆
[λ, µν|∆]red = [λ, µ]redν|∆ + µ[λ, ν]red|∆
[λ, [µ, ν]red]red + [µ, [ν, λ]red]red + [ν, [λ, µ]red]red = 0

Theorem 5 is an explicit way of saying that the operators (43) give rise to an
action of the algebra E on KM in the sense that there exists a linear map:

Φ : E → Hom(KM,KM×S), Φ(ek1,...,kn) = Ek1,...,kn
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satisfying the following properties for any x, y ∈ E :

Φ(xy) = Φ(x)Φ(y)|∆ (45)

Φ

(
[x, y]

(1− q1)(1− q2)

)
= [Φ(x),Φ(y)]red (46)

The parameters q1 and q2 act on KS as multiplication with the Chern roots
of the cotangent bundle Ω1

S . The reason why the left-hand side of (46) makes
sense is that for any x, y which are sums of products of the generators an,k of
E , relations (36) and (37) imply that [x, y] is a multiple of (1− q1)(1− q2).

3 Proving the main theorem

3.1 Hecke correspondences - part 2

As we have seen, the operators Ek of (43) are defined by using the correspon-
dence Z1 and the line bundle L on it, as in (35). To define the operators Ek1,...,kn
in general, we will need to kick up a notch the Hecke correspondences from Sub-
section 1.5, and therefore we will recycle a lot of the notation therein. Thus,M
is still the moduli space of stable sheaves on a smooth projective surface S with
fixed r and c1, satisfying Assumptions A and S from Subsection 1.4. Consider:

Z2 =
{

(F ′′ ⊂ F ′ ⊂ F)
}
⊂
⊔
c2∈Z
M(r,c1,c2+2) ×M(r,c1,c2+1) ×M(r,c1,c2) (47)

We will denote the support points of flags as above by x, y ∈ S, so that the
closed points of Z2 take the form (F ′′ ⊂x F ′ ⊂y F). Consider:

Z2 ⊃ Z•2 =
{

(F ′′ ⊂x F ′ ⊂x F), x ∈ S
}

In other words, Z•2 is the closed subscheme of Z2 given by the condition that the
two support points coincide. These two schemes come endowed with maps:

Z2

π+

~~

π−

  
Z1 Z1

Z•2
π•+

~~

π•−

  
Z1 Z1

(48)

where:

π+(F ′′ ⊂ F ′ ⊂ F) = (F ′′ ⊂ F ′), π−(F ′′ ⊂ F ′ ⊂ F) = (F ′ ⊂ F)

The maps π•± are given by the same formulas as π±. The maps π± and π•± can
be realized as explicit projectivizations, as in (19). To see this, let us consider
the following coherent sheaves on Z1 × S:

W ′ = (p+ × IdS)∗(W), V ′ = (p+ × IdS)∗(V), U ′ = (p+ × IdS)∗(U) on Z1 × S
W ′• = (p+ × pS)∗(W), V ′• = (p+ × pS)∗(V), U ′• = (p+ × pS)∗(U) on Z1

More explicitly, we have:

U ′(F ′⊂yF ′′,x) = F ′|x U ′•(F ′⊂yF ′′) = F ′|y

and V ′,W ′,V ′•,W ′• are described analogously.
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Exercise 11. The scheme Z2 is the projectivization of U ′, in the sense that:

PZ1×S(U ′) ∼= Z2
π−−−→ Z1

Pull-backs do not preserve short exact sequences in general, because tensor
product is not left exact. As a consequence of this phenomenon, it turns out
that the short exact sequence (20) yields short exact sequences:

0→W ′ → V ′ → U ′ → 0 on Z1 × S (49)

0→ W
′•

L′•
→ V ′• → U ′• → 0 on Z1 (50)

where L′• is an explicit line bundle that the interested reader can find in Propo-
sition 2.18 of [20]. Therefore, Exercise 11 implies that we have diagrams:

Z2
∼= PZ1

(U ′) �
� ι′ //

π− ''

PZ1×S(V ′)

ρ′

��
Z1 × S

(51)

Z•2
∼= PZ1(U ′•) �

� ι′• //

π•− ''

PZ1(V ′•)

ρ′•

��
Z1

(52)

The ideals of the embeddings ι′ and ι′
•

are the images of the maps:

ρ′
∗
(W ′)⊗O(−1)→ ρ′

∗
(V ′)⊗O(−1)→ O (53)

ρ′
•∗
(
W ′•

L′•
)
⊗O(−1)→ ρ′

•∗
(V ′•)⊗O(−1)→ O (54)

on PZ1×S(V ′) and PZ1
(V ′•), respectively. The following Proposition, analogous

to Exercise 7, implies that the embeddings ι′ and ι′
•

are regular. In other words,
the compositions (53) and (54) are duals of regular sections of vector bundles.
The regularity of the latter section would fail if we usedW ′• instead ofW ′•/L′•.

Proposition 1. ([20]) Under Assumption S, Z2 and Z•2 have dimensions:

const + r(c2 + c′′2) + 2 and const + r(c2 + c′′2) + 1

respectively, where c2 and c′′2 are the locally constant functions on the scheme
Z2 = {(F ′′ ⊂ F ′ ⊂ F)} which keep track of the second Chern classes of the
sheaves F and F ′′. Moreover, Z2 is an l.c.i. scheme, while Z•2 is smooth.

It is also easy to describe the singular locus of Z2: it consists of closed points
(F ′′ ⊂x F ′ ⊂y F) where x = y and the quotient F/F ′′ is a split length 2 sheaf
(so isomorphic to a direct sum of two skyscraper sheaves Cx ⊕ Cx).
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3.2 The operators

There are two natural line bundles on the schemes Z2 and Z•2, denoted by:

L1,L2

��
Z2,Z

•
2

whose fiber over a point {(F ′′ ⊂x F ′ ⊂y F)} are the one-dimensional spaces
F ′x/F ′′x , Fy/F ′y, respectively. The maps of (17) and (48) may be assembled into:

Lk1

��

Lk2

��

Lkn−1

��

Lkn

��

Z•2
π•+

{{

π•−

!!

. . .
π•+

}}

π•−

""

Z•2
π•+

||

π•−

!!
Z1

p+×pS
��

Z1 Z1 Z1

p−

��
M× S M

for any k1, ..., kn ∈ Z. The above diagram of smooth schemes, morphisms and
line bundles gives rise to an operator:

KM
Ek1,...,kn−−−−−−→ KM×S

by tracing pull-back and push-forward maps from bottom right to bottom left,
and whenever we reach the scheme Z1 for the i–th time, we tensor by the line
bundle Lkn+1−i . In symbols:

Ek1,...,kn = (p+ × pS)∗(
Lk1 · π•+∗π•∗−

(
Lk2 · π•+∗...π•∗−

(
Lkn−1 · π•+∗π•∗−

(
Lkn · p∗−

)
...
)

(55)

and we claim that these are the operators whose existence was stipulated in
Theorem 5. Recall that this means that the operators Ek1,...,kn defined as above
should satisfy relation (44). In the remainder of this lecture, we will prove the
said relation in the case n = 1, i.e. we will show that:

[Ek, Ed] = ∆∗

({∑
k≤a<dEa,k+d−a if d > k

−
∑
d≤a<k Ea,k+d−a if d < k

)
(56)

The proof of (44) for arbitrary n follows the same principle, although it uses
some slightly more complicated geometry and auxiliary spaces.

Remark 3. Note that even the case k = d of (56), i.e. the relation [Ek, Ek] = 0,
is non-trivial. The reason for this is that the commutator is defined as the
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difference of the following two compositions, as in Theorem 3:

KM
Ek−−→ KM×S

Ek�IdS−−−−−→ KM×S×S

KM
Ek−−→ KM×S

Ek�IdS−−−−−→ KM×S×S
IdKM�swap
−−−−−−−−→ KM×S×S

Recall that “swap” is the permutation of the two factors of S × S, and the rea-
son why we apply it to the second composition is that, in a commutator of the
form [Ek, Ed], we wish to ensure that each operator acts in one and the same
factor of KS×S. However, the presence of “swap” implies that the two composi-
tions above are not trivially equal to each other. Their equality is proved in (56).

Remark 4. When k1 = ... = kn = 0, the composition (55) makes sense in
cohomology instead of K–theory. In this case, it is not hard to see that the
resulting operator E0,...,0 is equal to An of (28). Indeed, this follows from the
fact that the former operator is (morally speaking) given by the correspondence:{

(F ′ = F0 ⊂x F1 ⊂x ... ⊂x Fn−1 ⊂x Fn = F , length Fi/Fi−1 = 1)
}

(57)

between the moduli spaces parametrizing the sheaves F and F ′, while the rank
r generalization of the latter operator ([1]) is given by the correspondence:{

(F ′ ⊂x F , length F/F ′ = n)
}

(58)

Since the correspondence (57) is generically 1-to-1 over the correspondence (58),
this implies that their fundamental classes give rise to the same operators in
cohomology. This argument needs care to be made precise, because the operator
E0,...,0 is not really given by the fundamental class of (57), but by some virtual
fundamental class that arises from the composition of operators (55).

3.3 The moduli space of squares

In order to prove (56), let us consider the space Y of quadruples of stable sheaves:

F̃ ′ � o
x

��
F ′′
. �

y

>>

� p

x !!

F

F ′
. �

y

>>

(59)

where x, y ∈ S are arbitrary. There are two maps π↓, π↑ : Y → Z2 which forget
the top-most sheaf and the bottom-most sheaf, respectively, and line bundles:

L1,L2,L′1,L′2 ∈ Pic(Y)

whose fibers are given by the spaces of sections of the length 1 skyscraper sheaves
F ′/F ′′, F/F ′, F̃ ′/F ′′, F/F̃ ′, respectively. Note that:

L1L2
∼= L′1L′2 (60)
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Proposition 2. ([20]) The scheme Y is smooth, of the same dimension as Z2.

It is easy to see that the map Y π↓−→ Z2 is surjective. The fiber of this map
above a closed point (F ′′ ⊂x F ′ ⊂y F) ∈ Z2 consists of a single point unless
x = y and F/F ′′ is a split length 2 sheaf, in which case the fiber is a copy of
P1 (Exercise: prove this). Since the locus where x = y and F/F ′′ is precisely
the singular locus of Z2, it should not be surprising that Y is a resolution of
singularities of Z2. The situation is made even nicer by the following.

Proposition 3. ([20]) We have π↓∗(OY) = OZ2 and Riπ↓∗(OY) = 0 for all i > 0.

The Proposition above can be proved by embedding Y into PZ2
(N ), where N

is the rank 2 vector bundle on Z2 with fibers given Γ(S,F/F ′′), and the ideal of
this embedding can be explicitly described. As a consequence, one can compute
the derived direct images of π↓ directly.

Exercise 12. Find a map of line bundles L1
σ−→ L′2 on Y with zero subscheme:

Z•2
∼=
{
x = y,F ′ = F̃ ′

}
⊂ Y

3.4 Proof of relation (56)

Consider the diagram:

Z2

π+

~~

π−

  
Z1

p−   

Z1

p+~~
M

(F ′′ ⊂x F ′ ⊂y F)

π+

vv

π−

((
(F ′′ ⊂x F ′)

p−

((

(F ′ ⊂y F)

p+

vvF ′

It is clear that the square is Cartesian, but in fact more is true. We know that
π− and p− are compositions of a regular embedding following by a projective
bundle. But comparing (21), (22) with (51), (53), we see that the regular
embedding and the projective bundle in question are the same for the two maps
π− and p−, and this implies that the base change formula holds:

p∗− ◦ p+∗ = π+∗ ◦ π∗− : KZ1
→ KZ1

As a consequence of the formula above, one can show the following:

Exercise 13. Prove the equality Ek ◦ Ed = (λ+ × λS×S)∗

(
Lk1Ld2 · λ∗−

)
, where:

Z2

λ+

{{
λS×S

��

λ−

##
M S × S M

(F ′′ ⊂x F ′ ⊂y F)

xx �� &&F ′′ (x, y) F
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Using Exercise 13 and Proposition 3 implies that:

Ek ◦ Ed = (µ+ × µS×S)∗

(
Lk1Ld2 · µ∗−

)
Ed ◦ Ek = (µ+ × µS×S)∗

(
L′1

dL′2
k · µ∗−

)
where the maps are as follows:

Y
µ+

{{
µS×S

��

µ−

##
M S × S M

square (59)

yy �� $$yy �� $$yy �� $$yy �� $$
F ′′ (x, y) F

Therefore, assuming d ≥ k without loss of generality, we have:

[Ek, Ed] = (µ+ × µS×S)∗

( [
Lk1Ld2 − L′1

dL′2
k
]
· µ∗−

)
= (61)

= (µ+ × µS×S)∗

([
1− L1

L′2

] [
Lk1Ld2 + Lk+1

1

Ld2
L′2

+ ...+ Ld−1
1

Ld2
L′2

d−k−1

]
· µ∗−

)
where the last equality is a consequence of (60).

Exercise 14. Show that Exercise 12 implies that:

(µ+×µS×S)∗

([
1− L1

L′2

]
· Le1L

f
2L′1

gL′2
h · µ∗−

)
= (ν+×νS×S)∗

(
Le+g1 Lf+h

2 · ν∗−
)

where the latter maps are as follows:

Z•2
ν+

~~
νS

��

ν−

  
M S M

(F ′′ ⊂x F ′ ⊂x F)

ww �� &&F ′′ x F

In terms of the maps (17) and (48), we have ν± = p± ◦ π•±.

Formula (61) and Exercise 14 imply formula (56).

3.5 Toward the derived category

The definition of the operators Ek1,...,kn in (55) immediately generalizes to the
derived category (replacing all pull-back and push-forward maps by the corre-
sponding derived inverse and direct image functors), thus yielding functors:

DM
Ẽk1,...,kn−−−−−−→ DM×S

The proof of the previous Subsection immediately shows how to interpret for-
mula (56). Still assuming d ≥ k, it follows that there exists a natural transfor-
mation of functors:

Ẽd ◦ Ẽk → Ẽk ◦ Ẽd
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whose cone has a filtration with associated graded object:

d−1⊕
a=k

∆∗

(
Ẽa,k+d−a

)
Relation (44) has a similar generalization to the derived category, and the proof
uses slightly more complicated spaces instead of Y. The corresponding formula
leads one to a categorification Ẽ of the algebra E , which acts on the derived
categories of the moduli spaces M. The complete definition of Ẽ is still work
in progress, but when complete, it should provide a categorification of relations
(36)–(37), and in particular a categorification of the Heisenberg algebra (25).
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