Summer School on Geometric Representation Theory Institute of Science and Technology Austria 2018 Category \mathcal{O} , symplectic duality, and the Hikita conjecture

Lecture 2: The Hikita conjecture

Exercises

1. In the second lecture, we looked at the algebra

$$A_{\hbar} := \mathbb{C}\langle a_1, a_2, a_3, b, c, \hbar \rangle \Big/ \Big\langle [a, b] = -b\hbar, \ [a, c] = c\hbar, \ bc = (a_1 + \hbar)(a_2 + \hbar)(a_3 + \hbar), \ cb = a_1 a_2 a_3 \Big\rangle,$$

which is the Rees algebra of the universal quantization of the Kleinian singularity of type A_2 . If we set $\hbar = 1$ and $a_3 - a_2 = a_2 - a_1 = 1$, we obtain the algebra A from the first problem set (with $a = a_1$), which is a single quantization of the same space. Applying the construction in the second lecture, we obtain the algebra

$$B_{\hbar} := \mathbb{C}[a_1, a_2, a_3, \hbar] / \langle bc \rangle = \mathbb{C}[a_1, a_2, a_3, \hbar] / \langle (a_1 + \hbar)(a_2 + \hbar)(a_3 + \hbar) \rangle$$

and its specialization

$$B = \mathbb{C}[a,\hbar] / \langle bc \rangle = \mathbb{C}[a] / \langle (a+1)(a+2)(a+3) \rangle.$$

Consider the three simple B-modules

$$N_1 := \mathbb{C}[a]/\langle a+1 \rangle, \qquad N_2 := \mathbb{C}[a]/\langle a+2 \rangle, \qquad \text{and} \qquad N_3 := \mathbb{C}[a]/\langle a+3 \rangle.$$

Let $A_{-} \subset A$ be the subalgebra generated by a and c, and consider the A-modules

$$V_i := A \otimes_{A_-} N_i,$$

where A_{-} acts on N_i by letting c act by zero. These are the "Verma modules" in category \mathcal{O} . Show that each V_i has a unique simple quotient, and that quotient is the module L_i that appeared on the first problem set.¹

2. In the second lecture, we checked the Hikita conjecture with X equal to the Kleinian singularity of type A_2 and $\tilde{X}^!$ equal to the cotangent bundle of \mathbb{P}^2 . Now let's check it with the roles reversed. That is, let \tilde{X} be the cotangent bundle of \mathbb{P}^2 , which means that X is the space of 3×3 nilpotent matrices of rank at most 1. Let $z_{ij} \in \mathbb{C}[X]^2$ be the function that picks out the (i, j) entry of the matrix. The fact that the matrix has rank at most 1 means that $z_{ij}z_{kl} = z_{il}z_{kj}$ for all i, j, k, l, and the fact that it is nilpotent means that in addition we have $z_{11} + z_{22} + z_{33} = 0$.

The torus acting on X is the maximal torus of $\operatorname{PGL}_3(\mathbb{C})$, and the function z_{ij} has weight $e_i - e_j$ with respect to this torus action. Recall that $\mathbb{C}[X^T]$ is the quotient of $\mathbb{C}[X]$ by the ideal generated by all functions of nonzero weight, and it's enough to kill z_{ij} for $i \neq j$. Show that $\mathbb{C}[X^T]$ is isomorphic as a graded algebra to the cohomology ring of the symplectic resolution of the Kleinian singularity of type A_2 .

¹In the first problem set, we called the subalgebra generated by a and $c A_+$ rather than A_- , which means that we were using the opposite \mathbb{Z} -grading on A and the corresponding opposite definition of category \mathcal{O} . These two differences cancel out, so the category \mathcal{O} that appears in both problem sets is the same!