EXERCISE SHEET 3

CATHARINA STROPPEL

1. Let H_d be the degenerate affine Hecke algebra, and H_d^{aff} be the affine Hecke algebra. Show that

$$Z(H_d) = \mathbb{C}[X_1, \ldots, X_d],$$

and

$$Z(H_d^{\mathrm{aff}}) = C[X_1^{\pm}, \ldots, X_d^{\pm}]^{S_d}.$$

2. Verify that H_d acts on $M \otimes V^{\otimes d}$. Show that

$$\Omega = \frac{1}{2} \left(\Delta(C) - C \otimes 1 - 1 \otimes C \right)$$

on $M \otimes V$, where *C* is the Casimir element in $U(\mathfrak{g})$. Use this to find a finite-dimensional quotient of H_d acting on $M^{\mathfrak{p}}(\lambda) \otimes V$ for $\mathfrak{p} \subset \mathfrak{gl}_n$ a parabolic, and λ any integral weight of your choice.

- 3. Guess some relations in W_d from the action.
- 4. Consider $\partial_i : \mathbb{C}[X_1, \dots, X_d] \to \mathbb{C}[X_1, \dots, X_d]$ for $1 \le i \le d-1$, defined by $\partial_i(f) = \frac{f - s_i(f)}{X_i - X_{i+1}}.$

Show that $\partial_i^2 = 0$, and that the operators ∂_i satisfy the braid relations. Compute the subalgebra of $\text{End}_{\mathbb{C}}(\mathbb{C}[X_1, \dots, X_d])$ generated by the operators ∂_i and multiplication with X_i s. Compare with R_d with e > 3, and $\underline{d} = (0, \dots, 0, k, 0, \dots)$ for any k.

5. Show that

$$A_{\underline{d}} \cong \bigoplus_{(\widehat{\lambda},\widehat{\mu})} \operatorname{Ext}^*(p_* \underline{\mathbb{C}}_{Q(\widehat{\lambda})}, p_* \underline{\mathbb{C}}_{Q(\widehat{\mu})}),$$

where $p = p_{\hat{\lambda}}$ is the forgetful functor $Q(\hat{\lambda}) \rightarrow \operatorname{Rep}_d$.

6. Construct a representation of H_d on $\mathbb{C}[X_1, \ldots, X_d]$. Is it faithful?